Nonintrusive reduced order model for parametric solutions of inertia relief problems

The Inertia Relief (IR) technique is widely used by industry and produces equilibrated loads allowing to analyze unconstrained systems without resorting to the more expensive full dynamic analysis. The main goal of this work is to develop a computational framework for the solution of unconstrained parametric structural problems with IR and the Proper Generalized Decomposition (PGD) method. First, the IR method is formulated in a parametric setting for both material and geometric parameters. A reduced order model using the encapsulated PGD suite is then developed to solve the parametric IR problem, circumventing the so-called curse of dimensionality. With just one offline computation, the proposed PGD-IR scheme provides a computational vademecum that contains all the possible solutions for a pre-defined range of the parameters. The proposed approach is nonintrusive and it is therefore possible to be integrated with commercial FE packages. The applicability and potential of the developed technique is shown using a three dimensional test case and a more complex industrial test case. The first example is used to highlight the numerical properties of the scheme, whereas the second example demonstrates the potential in a more complex setting and it shows the possibility to integrate the proposed framework within a commercial FE package. In addition, the last example shows the possibility to use the generalized solution in a multi-objective optimization setting.

[1]  E. Y. Kuo,et al.  Vehicle Body Structure Durability Analysis , 1995 .

[2]  Francisco Chinesta,et al.  PGD for solving multidimensional and parametric models , 2014 .

[3]  Adrien Leygue,et al.  A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization , 2010 .

[5]  Majid Anvari,et al.  Automotive Body Fatigue Analysis – Inertia Relief or Transient Dynamics? , 1999 .

[6]  Amine Ammar,et al.  Proper Generalized Decomposition method for incompressible flows in stream-vorticity formulation , 2010 .

[7]  Cédric Leblond,et al.  A priori space–time separated representation for the reduced order modeling of low Reynolds number flows , 2014 .

[8]  Adrien Leygue,et al.  Proper Generalized Decomposition based dynamic data-driven control of thermal processes ☆ , 2012 .

[9]  Qin Sun,et al.  Modified Inertia Relief Method Based on Accurate Inertia Loads , 2017 .

[10]  J. P. Moitinho de Almeida,et al.  Error estimation for proper generalized decomposition solutions: A dual approach , 2020 .

[11]  F. Chinesta,et al.  Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .

[12]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[13]  Antonio Huerta,et al.  Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM , 2019, Comput. Phys. Commun..

[14]  Antonio Huerta,et al.  Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows , 2020, ArXiv.

[15]  Antonio Huerta,et al.  Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations , 2017 .

[16]  Pedro Díez,et al.  Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) , 2018 .

[17]  F. Chinesta,et al.  The Proper Generalized Decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics , 2013 .

[18]  Sergio Zlotnik,et al.  A Proper Generalized Decomposition (PGD) approach to crack propagation in brittle materials: with application to random field material properties , 2020, Computational Mechanics.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[21]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[22]  Lin Liao,et al.  A Study of Inertia Relief Analysis , 2011 .

[23]  Antonio J. Gil,et al.  A staggered high-dimensional Proper Generalised Decomposition for coupled magneto-mechanical problems with application to MRI scanners , 2020 .

[24]  J. P. Moitinho de Almeida,et al.  A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics , 2013 .

[25]  Alan R. Barnett,et al.  Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter , 1995 .

[26]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[27]  Antonio Huerta,et al.  Solution of geometrically parametrised problems within a CAD environment via model order reduction , 2020, Computer Methods in Applied Mechanics and Engineering.

[28]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[29]  Michele Conti,et al.  A nonintrusive proper generalized decomposition scheme with application in biomechanics , 2018 .

[30]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[31]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[32]  Antonio Huerta,et al.  Proper generalized decomposition solutions within a domain decomposition strategy , 2018 .

[33]  T. Heuzé,et al.  Parametric modeling of an electromagnetic compression device with the proper generalized decomposition , 2016 .

[34]  Narayanan Pagaldipti,et al.  Influence of Inertia Relief on Optimal Designs , 2004 .

[35]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[36]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[37]  Sergio Zlotnik,et al.  Algebraic PGD for tensor separation and compression: An algorithmic approach , 2018, Comptes Rendus Mécanique.

[38]  A. Sarwade,et al.  Aeroelasticity , 2021, Biophysics of Insect Flight.

[39]  Jaap Wijker,et al.  Mechanical Vibrations in Spacecraft Design , 2003 .

[40]  C. Allery,et al.  Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..

[41]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[42]  David Néron,et al.  Integration of PGD-virtual charts into an engineering design process , 2016 .

[43]  Joseph A. Wolf,et al.  The Use of Inertia Relief to Estimate Impact Loads , 1977 .

[44]  B. Feeny,et al.  On the physical interpretation of proper orthogonal modes in vibrations , 1998 .

[45]  Antonio Huerta,et al.  Encapsulated PGD Algebraic Toolbox Operating with High-Dimensional Data , 2020 .

[46]  Antonio Huerta Cerezuela Proper Generalized Decomposition based dynamic data-driven control of thermal processes , 2012 .

[47]  S. Baskar,et al.  Door Structural Slam Durability Inertia Relief Approach , 1998 .

[48]  Antonio Huerta,et al.  Generalized parametric solutions in Stokes flow , 2017, 1704.02817.

[49]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .