Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  Gregor Gassner,et al.  A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations , 2017, J. Comput. Phys..

[3]  Hendrik Ranocha,et al.  Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations , 2017, J. Sci. Comput..

[4]  Dominik Derigs,et al.  A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD , 2016, J. Comput. Phys..

[5]  Hendrik Ranocha,et al.  Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods , 2016, GEM - International Journal on Geomathematics.

[6]  Andrew R. Winters,et al.  A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure , 2016, J. Comput. Phys..

[7]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[8]  David C. Del Rey Fernández,et al.  Multidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements , 2015, SIAM J. Sci. Comput..

[9]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[10]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[11]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[13]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[14]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[15]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[16]  Hongwei Chen,et al.  Means Generated by an Integral , 2005 .

[17]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[18]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[19]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[20]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[21]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[22]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[23]  Yohei Morinishi,et al.  Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..

[24]  Christopher A. Kennedy,et al.  Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid , 2008, J. Comput. Phys..

[25]  B. Perthame,et al.  Some New Godunov and Relaxation Methods for Two-Phase Flow Problems , 2001 .

[26]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[27]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..