The continuous functions for the Fibonacci and Lucas p-numbers

The new continuous functions for the Fibonacci and Lucas p-numbers using Binet formulas are introduced. The article is of a fundamental interest for Fibonacci numbers theory and theoretical physics.

[1]  Alexey Stakhov,et al.  On a new class of hyperbolic functions , 2005 .

[2]  R. Mauldin,et al.  Random recursive constructions: asymptotic geometric and topological properties , 1986 .

[3]  M. Naschie Quantum mechanics and the possibility of a Cantorian space-time , 1991 .

[4]  Alexey Stakhov,et al.  The golden section in the measurement theory , 1989 .

[5]  Alexey Stakhov,et al.  Theory of Binet formulas for Fibonacci and Lucas p-numbers , 2006 .

[6]  M. E. Naschie,et al.  On a class of general theories for high energy particle physics , 2002 .

[7]  A. Stakhov,et al.  The Golden Shofar , 2005 .

[8]  A. Stakhov,et al.  The “golden” algebraic equations , 2006 .

[9]  M. Naschie Is quantum space a random cantor set with a golden mean dimension at the core , 1994 .

[10]  M. Naschie On dimensions of Cantor set related systems , 1993 .

[11]  M. E. Naschie,et al.  Complex vacuum fluctuation as a chaotic “limit” set of any Kleinian group transformation and the mass spectrum of high energy particle physics via spontaneous self-organization , 2003 .

[12]  Alexey Stakhov,et al.  The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering , 2005 .

[13]  M. S. El Naschie,et al.  On a Fuzzy Kähler-like Manifold which is Consistent with the Two Slit Experiment , 2005 .

[14]  A. Stakhov Generalized golden sections and a new approach to the geometric definition of a number , 2004 .

[15]  S. Vajda,et al.  Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications , 1990, The Mathematical Gazette.

[16]  M. Naschie A few hints and some theorems about Witten’s M theory and T-duality , 2005 .

[17]  V. Hoggatt Fibonacci and Lucas Numbers , 2020, Mathematics of Harmony as a New Interdisciplinary Direction and “Golden” Paradigm of Modern Science.

[18]  M. Naschie Fredholm operators and the wave-particle duality in Cantorian space , 1998 .