Many-body Green's function approach to lattice thermal transport

Recent progress in understanding thermal transport in complex crystals has highlighted the promi-nent role of heat conduction mediated by interband tunneling processes, which emerge between overlapping phonon bands ( i.e . with energy differences smaller than their broadenings). These processes have recently been described in different ways, relying on the Wigner or Green-Kubo formalism, leading to apparently different results which question the definition of the heat-current operator. Here, we implement a full quantum approach based on the Kubo formula, elucidating analogies and differences with the recently introduced Wigner or Green-Kubo formulations, and extending the description of thermal transport to the overdamped regime of atomic vibrations, where the phonon quasiparticle picture breaks down. We rely on first-principles calculations on complex crystals with ultralow conductivity to compare numerically the thermal conductivity obtained within the aforementioned approaches, showing that at least in the quasiparticle regime the differences are negligible for practical applications.

[1]  N. Marzari,et al.  Wigner Formulation of Thermal Transport in Solids , 2021, Physical Review X.

[2]  O. Delaire,et al.  Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3 , 2021, Nature Materials.

[3]  S. Fahy,et al.  The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe , 2020, npj Computational Materials.

[4]  Muratahan Aykol,et al.  High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity , 2020 .

[5]  Tianli Feng,et al.  Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals , 2020, Nature Communications.

[6]  V. Ozoliņš,et al.  Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu_{12}Sb_{4}S_{13} Tetrahedrites. , 2020, Physical review letters.

[7]  Kaiming Liao,et al.  Microstructure and thermal & mechanical properties of La2Zr2O7@YSZ composite ceramic , 2020 .

[8]  N. Marzari,et al.  Generalization of Fourier’s Law into Viscous Heat Equations , 2019, Physical Review X.

[9]  S. Baroni,et al.  Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach , 2019, Nature Communications.

[10]  N. Marzari,et al.  Unified theory of thermal transport in crystals and glasses , 2019, Nature Physics.

[11]  A. McGaughey,et al.  Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation , 2019, Journal of Applied Physics.

[12]  F. Mauri,et al.  Position and momentum mapping of vibrations in graphene nanostructures , 2018, Nature.

[13]  Pinshane Y. Huang,et al.  High thermal conductivity in cubic boron arsenide crystals , 2018, Science.

[14]  L. Paulatto,et al.  Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe. , 2018, Physical review letters.

[15]  D. Parker,et al.  Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 , 2018, Science.

[16]  Q. Zheng,et al.  Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires. , 2018, Nano letters.

[17]  T. Sewell,et al.  Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity , 2018 .

[18]  S. Baroni,et al.  Heat Transport in Insulators from Ab Initio Green-Kubo Theory , 2018, Handbook of Materials Modeling.

[19]  M. Schmidt,et al.  Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33 , 2017, Nature Communications.

[20]  Li Shi,et al.  Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal , 2017, 1708.08158.

[21]  Li Li,et al.  Lanthanum zirconate based thermal barrier coatings: A review , 2017 .

[22]  J. Grossman,et al.  Ultralow thermal conductivity in all-inorganic halide perovskites , 2017, Proceedings of the National Academy of Sciences.

[23]  W. Pan,et al.  Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications , 2016 .

[24]  Rampi Ramprasad,et al.  Ab Initio Green-Kubo Approach for the Thermal Conductivity of Solids. , 2016, Physical review letters.

[25]  L. Lindsay First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review , 2016 .

[26]  Nicola Marzari,et al.  Thermal transport in crystals as a kinetic theory of relaxons , 2016, 1603.02608.

[27]  P. Umari,et al.  Gauge Invariance of Thermal Transport Coefficients , 2016, 1601.00158.

[28]  Lijun Wu,et al.  Lattice vibrations in the Frenkel-Kontorova Model. II. Thermal conductivity , 2015 .

[29]  Lijun Wu,et al.  Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy , 2015 .

[30]  O. Delaire,et al.  Twisting phonons in complex crystals with quasi-one-dimensional substructures , 2015, Nature Communications.

[31]  Wu Li,et al.  Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe 4 Sb1 2 due to the flat avoided-crossing filler modes , 2015 .

[32]  Aris Marcolongo,et al.  Microscopic theory and quantum simulation of atomic heat transport , 2015, Nature Physics.

[33]  L. Paulatto,et al.  Phonon hydrodynamics in two-dimensional materials , 2015, Nature Communications.

[34]  L. Paulatto,et al.  First-principles calculations of phonon frequencies, lifetimes, and spectral functions from weak to strong anharmonicity: The example of palladium hydrides , 2014, 1411.5628.

[35]  Nicola Marzari,et al.  Thermal conductivity of graphene and graphite: collective excitations and mean free paths. , 2014, Nano letters.

[36]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[37]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[38]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.

[39]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[40]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[41]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[42]  P. B. Allen,et al.  Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model , 2010 .

[43]  Wei Zhang,et al.  Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore , 2010 .

[44]  Yanfeng Gao,et al.  Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing , 2009 .

[45]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[46]  G. Schatz The journal of physical chemistry letters , 2009 .

[47]  Giulia Galli,et al.  Atomistic simulations of heat transport in silicon nanowires. , 2009, Physical review letters.

[48]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[49]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[50]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[51]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[52]  A. Politi,et al.  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[53]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[54]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[55]  Walter A. Harrison,et al.  Electrons and Phonons , 2000 .

[56]  Jaroslav Fabian,et al.  Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si , 1999 .

[57]  M. Krishnaiah,et al.  Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum , 1997 .

[58]  Baroni,et al.  Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory. , 1995, Physical review letters.

[59]  J. Feldman,et al.  Realistic model calculations based on the Kubo theory for the thermal conductivity of amorphous insulators , 1995 .

[60]  Allen,et al.  Thermal conductivity of disordered harmonic solids. , 1993, Physical review. B, Condensed matter.

[61]  Allen,et al.  Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. , 1993, Physical review. B, Condensed matter.

[62]  Vanderbilt,et al.  Anharmonic self-energies of phonons in silicon. , 1991, Physical review. B, Condensed matter.

[63]  Allen,et al.  Thermal conductivity of glasses: Theory and application to amorphous Si. , 1989, Physical review letters.

[64]  Prashant K. Sharma,et al.  Thermal Conductivity of an Anharmonic Crystal , 1972 .

[65]  S. Behera,et al.  Substitutional Defects and Resonant Modes in Solids , 1967 .

[66]  Robert A. Guyer,et al.  Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals , 1966 .

[67]  S. Behera,et al.  Calculation of Thermal Conductivity by the Kubo Formula , 1966 .

[68]  K. N. Pathak Theory of Anharmonic Crystals , 1965 .

[69]  R. Tye,et al.  thermal conductivity , 2019 .

[70]  A. Maradudin THE LATTICE THERMAL CONDUCTIVITY OF AN ISOTOPICALLY DISORDERED CRYSTAL , 1964 .

[71]  R. Hardy ENERGY-FLUX OPERATOR FOR A LATTICE , 1963 .

[72]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[73]  R. Kubo,et al.  Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance , 1957 .

[74]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[75]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[76]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[77]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[78]  P. Rennert,et al.  Many‐particle Physics , 1982 .

[79]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[80]  J. K. Jaen NEW APPROACH TO QUANTUM STATISTICAL MECHANICS. , 1972 .

[81]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[82]  G. V. Chester The theory of irreversible processes , 1963 .

[83]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .