Linear and nonlinear dynamics of suspended cable considering bending stiffness

This paper reports a systematic investigation on the linear and nonlinear dynamics of a suspended cable, taking bending stiffness into account. Firstly, the linear dynamics features, for example, eigen frequencies and modes for in-plane and out-of-plane motions, are formulated. Secondly, parametrical studies are conducted to explore the effect of bending stiffness on the natural frequencies and mode shapes of the symmetrical/antisymmetrical in-plane and out-of-plane modes. Then, the three-to-one internal resonance between the first- and third-order in-plane symmetrical modes is analyzed by applying directly the method of multiple scales dealing with the nonlinear partial differential equation and boundary conditions. Finally, the frequency-response curves and force-response curves are obtained through solving the modulation equations using the Newton–Raphson method and the pseudo-arclength scheme. The results show that the bending stiffness plays a considerable role in changing the natural frequencies and mode shapes, shifting the conditions for the occurring of nonlinear interaction, saddle-node bifurcation and Hopf bifurcation of suspended cables.

[1]  Federico Perotti,et al.  Numerical analysis of the non-linear dynamic behaviour of suspended cables under turbulent wind excitation , 2001 .

[2]  Lianhua Wang,et al.  Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations , 2009 .

[3]  Giuseppe Ricciardi,et al.  A continuous vibration analysis model for cables with sag and bending stiffness , 2008 .

[4]  N. C. Perkins,et al.  TWO-DIMENSIONAL VORTEX-INDUCED VIBRATION OF CABLE SUSPENSIONS , 2002 .

[5]  Murari L. Gambhir,et al.  Parametric study of free vibration of sagged cables , 1978 .

[6]  Somchai Chucheepsakul,et al.  Large Amplitude Three-Dimensional Free Vibrations of Inclined Sagged Elastic Cables , 2003 .

[8]  Noel C. Perkins,et al.  Modal interactions in the non-linear response of elastic cables under parametric/external excitation , 1992 .

[9]  Raouf A. Ibrahim,et al.  Planar and non-planar nonlinear dynamics of suspended cables under random in-plane loading , 1994 .

[10]  J. J. Burgess,et al.  Bending Stiffness In A Simulation Of Undersea Cable Deployment , 1993 .

[11]  Lianhua Wang,et al.  Non-linear planar dynamics of suspended cables investigated by the continuation technique , 2007 .

[12]  Raouf A. Ibrahim,et al.  Planar and non-planar non-linear dynamics of suspended cables under random in-plane loading-I. Single internal resonance , 1996 .

[13]  J. H. Griffin,et al.  On the dynamic response of a suspended cable , 1976 .

[14]  J. W. Hijmissen,et al.  On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-mass-damper , 2009 .

[15]  C. J. McGrath,et al.  The Effect , 2012 .

[16]  G. Rega,et al.  Experimental Investigation of the Nonlinear Response of a Hanging Cable. Part II: Global Analysis , 1997 .

[17]  Giuseppe Piccardo,et al.  A linear curved-beam model for the analysis of galloping in suspended cables , 2007 .

[18]  Yi-Qing Ni,et al.  Nonlinear periodically forced vibration of stay cables , 2004 .

[19]  Y Cai,et al.  Dynamics of Elastic Cable under Parametric and External Resonances , 1994 .

[20]  H. M. Irvine,et al.  The linear theory of free vibrations of a suspended cable , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Giuseppe Piccardo,et al.  Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables , 2008 .

[22]  G. Rega,et al.  Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: Theoretical formulation and model validation , 2007 .

[23]  S. I. Al-Noury,et al.  Large-amplitude vibrations of parabolic cables , 1985 .

[24]  R. Ibrahim,et al.  Multiple Internal Resonance in Suspended Cables under Random In-Plane Loading , 1997 .

[25]  Noel C. Perkins,et al.  Nonlinear oscillations of suspended cables containing a two-to-one internal resonance , 1992, Nonlinear Dynamics.

[26]  Giuseppe Piccardo,et al.  On the effect of twist angle on nonlinear galloping of suspended cables , 2009 .

[27]  G. Rega,et al.  Nonlinear vibrations of suspended cables—Part II: Deterministic phenomena , 2004 .

[28]  Marcelo A. Ceballos,et al.  Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests , 2008 .

[29]  Ali H. Nayfeh,et al.  Multimode interactions in suspended cables , 2001 .

[30]  A. H. Nayfeh,et al.  Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems , 2003 .

[31]  N. Ganesan,et al.  Transmission line vibration with 4R dampers , 1978 .

[32]  Fabrizio Vestroni,et al.  Planar non-linear free vibrations of an elastic cable , 1984 .

[33]  A. H. Nayfeh,et al.  Multiple resonances in suspended cables: direct versus reduced-order models , 1999 .

[34]  Vinod Ganapathy,et al.  Dynamic Analysis , 2019, Design and Construction of LNG Storage Tanks.

[35]  Lianhua Wang,et al.  On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance , 2006 .

[36]  G. Rega,et al.  Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: Internal resonance activation, reduced-order models and nonlinear normal modes , 2007 .

[37]  J. Miller Numerical Analysis , 1966, Nature.

[38]  Yi-Qing Ni,et al.  DYNAMIC ANALYSIS OF LARGE-DIAMETER SAGGED CABLES TAKING INTO ACCOUNT FLEXURAL RIGIDITY , 2002 .

[39]  Max Irvine Local Bending Stresses In Cables , 1993 .

[40]  Walter Lacarbonara,et al.  Resonant non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems , 2003 .

[41]  Michael S. Triantafyllou,et al.  THE DYNAMICS OF TAUT INCLINED CABLES , 1984 .

[42]  Lianhua Wang,et al.  Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances , 2006 .

[43]  R. Alaggio,et al.  Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions , 1995 .

[44]  Fabio P. Figueiredo,et al.  The influence of bending and shear stiffness and rotational inertia in vibrations of cables: An analytical approach , 2011 .

[45]  Giuseppe Rega,et al.  Nonlinear vibrations of suspended cables—Part I: Modeling and analysis , 2004 .

[46]  Michael S. Triantafyllou,et al.  The paradox of the hanging string: An explanation using singular perturbations , 1991 .

[47]  R. Uhrig On Kinetic Response of Cables of Cable-Stayed Bridges Due to Combined Parametric and Forced Excitation , 1993 .

[48]  Harry H. West,et al.  Forced Vibrations of Cable Networks , 1980 .

[49]  Vincenzo Gattulli,et al.  Static and dynamic response of elastic suspended cables with thermal effects , 2012 .

[50]  Walter Lacarbonara,et al.  Nonlinear Modeling of Cables with Flexural Stiffness , 2008 .

[51]  Filippo Ubertini,et al.  Nonlinear State Observation for Cable Dynamics , 2009 .

[52]  Fabrizio Vestroni,et al.  Nonlinear oscillations of cables under harmonic loading using analytical and finite element models , 2004 .