CFD studies on rotational augmentation at the inboard sections of a 10 MW wind turbine rotor

In the analysis of the aerodynamic performance of wind turbines, the need to account for the effects of rotation is important as engineering models often failed to predict these phenomena. Investigations are carried out by employing an unsteady computational fluid dynamics (CFD) approach on a generic 10 MW AVATAR (Advanced Aerodynamic Tools for Large Rotors) blade. The focus of the studies is the evaluation of the 3D effect characteristics on thick airfoils in the root area. For preliminary studies, 2D simulations of the airfoils constructing the blade and 3D simulations of the turbine near the rated conditions are carried out. The 2D simulations are in good agreement with available measurements within the linear lift region, but the accuracy deteriorates in the post stall region. For the 3D wind turbine rotor results, the prediction is consistent with other CFD computations obtained from the literature. Further calculations of the rotor are conducted at 5 different wind speeds ranging from below to above...

[1]  W. H. H. Banks,et al.  DELAYING EFFECT OF ROTATION ON LAMINAR SEPARATION , 1963 .

[2]  Vladimir Cardos,et al.  Analysis of Leading-Edge Separation Bubbles on Rotating Blades , 2010 .

[3]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[4]  Ewald Krämer,et al.  Investigations of the inflow turbulence effect on rotational augmentation by means of CFD , 2016 .

[5]  U. Ghia,et al.  Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications , 2007 .

[6]  Thorsten Schwarz,et al.  Grid coupling by means of Chimera interpolation techniques , 2010 .

[7]  Jacques Hureau,et al.  Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms , 2008 .

[8]  Go Hutomo,et al.  Numerical study on a single bladed vertical axis wind turbine under dynamic stall , 2017 .

[9]  Jens Nørkær Sørensen,et al.  3D boundary layer study on a rotating wind turbine blade , 2007 .

[10]  James L. Tangler,et al.  Insight into Wind Turbine Stall and Post-stall Aerodynamics , 2004 .

[11]  P. F. Yaggy,et al.  Laminar boundary layers on helicopter rotors in forward flight. , 1968 .

[12]  Niels N. Sørensen,et al.  Extraction of Lift, Drag and Angle of Attack from Computed 3-D Viscous Flow around a rotating Blade , 1997 .

[13]  W. A. Timmer,et al.  Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils , 2003 .

[14]  Niels N. Sørensen,et al.  Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80-by-120 wind tunnel , 2002 .

[15]  Nicholas Rott Some Examples of Laminar Boundary-Layer Flow on Rotating Blades , 1956 .

[16]  Christian Bak,et al.  Three-dimensional corrections of airfoil characteristics based on pressure distributions (paper and poster) , 2006 .

[17]  G.J.W. Van Bussel,et al.  Experimental investigation of the root flow in a horizontal axis wind turbine , 2014 .

[18]  N. Troldborg,et al.  Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model , 2015 .

[19]  Joachim Peinke,et al.  Insight into Rotational Effects on a Wind Turbine Blade Using Navier–Stokes Computations , 2014 .

[20]  Vladimir Cardos,et al.  Inboard Stall Delay Due to Rotation , 2012 .

[21]  Earl P. N. Duque,et al.  Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment , 2003 .

[22]  David MacPhee,et al.  Fluid‐structure interaction of a morphing symmetrical wind turbine blade subjected to variable load , 2013 .

[23]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[24]  R. C. Swanson,et al.  Efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations , 1990 .

[25]  Scott J. Schreck,et al.  Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades , 2007 .

[26]  B. Akay,et al.  The root flow of horizontal axis wind turbine blades: Experimental analysis and numerical validation , 2016 .

[27]  Jeppe Johansen,et al.  Tip studies using CFD and comparison with tip loss models , 2004 .

[28]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[29]  Scott Schreck,et al.  Rotational augmentation of horizontal axis wind turbine blade aerodynamic response , 2002 .

[30]  Maureen Hand,et al.  Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Con gurations and Available Data Campaigns , 2001 .

[31]  Scott Schreck,et al.  Wind Tunnel Testing of NREL's Unsteady Aerodynamics Experiment , 2001 .

[32]  Nicholas Jenkins,et al.  Aerodynamics of horizontal axis wind turbines , 2002, Wind Energy Handbook 3e.

[33]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[34]  Niels N. Sørensen,et al.  A study on rotational augmentation using CFD analysis of flow in the inboard region of the MEXICO rotor blades , 2015 .

[35]  Marilyn J. Smith,et al.  Improving the CFD Predictions of Airfoils in Stall , 2005 .

[36]  Michael S. Selig,et al.  The effect of rotation on the boundary layer of a wind turbine blade , 2000 .

[37]  Vladimir Cardos,et al.  Rotational Effects on the Boundary-Layer Flow in Wind Turbines , 2004 .

[38]  Baker Jonathon Paul,et al.  Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils , 2006 .

[39]  Niels N. Sørensen,et al.  Comprehensive Aerodynamic Analysis of a 10 MW Wind Turbine Rotor Using 3D CFD , 2014 .

[40]  Laurence Eugene Fogarty The Laminar Boundary Layer on a Rotating Blade , 1951 .

[41]  Galih Bangga,et al.  An Examination of Rotational Effects on Large Wind Turbine Blades , 2017, 1705.04209.

[42]  Néstor Ramos-García,et al.  A strong viscous-inviscid interaction model for rotating airfoils , 2014 .

[43]  N. Troldborg,et al.  Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine , 2013 .

[44]  Jeppe Johansen,et al.  Detached-Eddy Simulation of Flow Around the NREL Phase-VI Blade , 2002 .

[45]  Ewald Krämer,et al.  Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations , 2017 .

[46]  H. S. Tan On Laminar Boundary Layer over a Rotating Blade , 1953 .

[47]  Galih Bangga,et al.  Numerical Investigation of Unsteady Aerodynamic Effects on Thick Flatback Airfoils , 2017 .

[48]  Michael Robinson,et al.  Aerodynamic structures and processes in rotationally augmented flow fields , 2003 .

[49]  Jens Nørkær Sørensen,et al.  Determination of the angle of attack on rotor blades , 2009 .

[50]  Ewald Krämer,et al.  Hybrid RANS/LES Simulations of the Three-Dimensional Flow at Root Region of a 10 MW Wind Turbine Rotor , 2018 .

[51]  Mc Croskey Measurements of boundary layer transition, separation and streamline direction on rotating blades , 1971 .

[52]  Niels N. Sørensen,et al.  Simulations of wind turbine rotor with vortex generators , 2016 .

[53]  P. K. Chaviaropoulos,et al.  Investigating Three-Dimensional and Rotational Effects on Wind Turbine Blades by Means of a Quasi-3D Navier-Stokes Solver , 2000 .

[54]  Jeppe Johansen,et al.  Aerofoil characteristics from 3D CFD rotor computations , 2004 .

[55]  Frank Thiele,et al.  The MEGAFLOW project , 2000 .

[56]  Maureen Hand,et al.  NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements , 2001 .

[57]  Daniel Micallef,et al.  Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments , 2010 .

[58]  Galih Bangga,et al.  Dynamic Stall Prediction of a Pitching Airfoil using an Adjusted Two-Equation URANS Turbulence Model , 2017 .

[59]  A. Le Pape,et al.  3D Navier–Stokes computations of a stall‐regulated wind turbine , 2004 .

[60]  Carlos Simao Ferreira,et al.  AVATAR: AdVanced Aerodynamic Tools for lArge Rotors , 2015 .