Isoindigo-based small molecules for high-performance solution-processed organic photovoltaic devices: the electron donating effect of the donor group on photo-physical properties and device performance.

Five solution processable isoindigo-based donor-acceptor-donor (D-A-D) small molecules with different electron donating strengths have been designed and synthesized. The variation in the electron donating strength of the donor group strongly affected the optical, thermal, electrochemical and photovoltaic device performances of the isoindigo organic materials. The highest power conversion efficiency of ~3.2% was achieved in the bulk heterojunction photovoltaic device consisting of ID3T as the donor and PC70BM as the acceptor. This work demonstrates the potential of isoindigo moieties as electron-deficient units and presents guidelines for the synthesis of D-A-D small molecules for producing highly efficient, solution-processed organic photovoltaic devices.

[1]  Thuc‐Quyen Nguyen,et al.  A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells , 2009 .

[2]  Yongfang Li,et al.  Efficiency enhancement in small molecule bulk heterojunction organic solar cells via additive , 2010 .

[3]  Thuc‐Quyen Nguyen,et al.  Design, Synthesis, and Self-assembly of Oligothiophene Derivatives with a Diketopyrrolopyrrole Core , 2008 .

[4]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[5]  Yuehui He,et al.  Low bandgap isoindigo-based copolymers: design, synthesis and photovoltaic applications , 2011 .

[6]  O. Inganäs,et al.  An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. , 2011, Chemical communications.

[7]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[8]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[9]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[10]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[11]  Bernard Kippelen,et al.  High performance polymeric charge recombination layer for organic tandem solar cells , 2012 .

[12]  Zaifang Li,et al.  Solution processable D–A small molecules for bulk-heterojunction solar cells , 2010 .

[13]  Jianguo Mei,et al.  Improved Performance of Molecular Bulk‐Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives , 2012 .

[14]  Chain-Shu Hsu,et al.  Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells , 2012, Advanced materials.

[15]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[16]  Hiroyuki Miyauchi,et al.  A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. , 2011, Journal of the American Chemical Society.

[17]  Yang Yang,et al.  Spin‐Coated Small Molecules for High Performance Solar Cells , 2011 .

[18]  John R. Reynolds,et al.  Isoindigo-Based Donor−Acceptor Conjugated Polymers , 2010 .

[19]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[20]  Trisha L. Andrew,et al.  Effect of synthetic accessibility on the commercial viability of organic photovoltaics , 2013 .

[21]  Jörg Maser,et al.  Detection and role of trace impurities in high-performance organic solar cells , 2013 .

[22]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[23]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[24]  Jean M. J. Fréchet,et al.  Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes , 2005 .

[25]  Christopher M. Proctor,et al.  Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells , 2013 .

[26]  O. Inganäs,et al.  Synthesis and characterization of benzodithiophene–isoindigo polymers for solar cells , 2012 .

[27]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[28]  John R. Reynolds,et al.  n-Type Conjugated Polyisoindigos , 2011 .

[29]  M. Jarosz,et al.  Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. , 2004, Journal of mass spectrometry : JMS.

[30]  J. Shim,et al.  Polydimethylsiloxane as a macromolecular additive for enhanced performance of molecular bulk heterojunction organic solar cells. , 2011, ACS applied materials & interfaces.

[31]  Claire H. Woo,et al.  Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly , 2011, Advanced materials.

[32]  Youn-Sik Lee,et al.  Synthesis of a benzothiadiazole/thiophene-based oligomer for bulk heterojunction photovoltaic cells , 2009 .

[33]  Thuc‐Quyen Nguyen,et al.  A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells , 2008 .

[34]  S. Yin,et al.  Efficient solution processed bulk-heterojunction solar cells based a donor–acceptor oligothiophene , 2010 .

[35]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[36]  Yuan Zhang,et al.  A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices , 2011 .

[37]  M. Wong,et al.  Solution processable donor–acceptor oligothiophenes for bulk-heterojunction solar cells , 2010 .

[38]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[39]  Jianguo Mei,et al.  Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. , 2010, Organic letters.

[40]  Barry P Rand,et al.  The effects of copper phthalocyanine purity on organic solar cell performance , 2005 .

[41]  Jae‐Suk Lee,et al.  Palladium‐Catalyzed Direct C–H Arylation of Thieno[3,4‐b]pyrazines: Synthesis of Advanced Oligomeric and Polymeric Materials , 2012 .

[42]  A. Jen,et al.  Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications , 2012 .

[43]  J. Kenny,et al.  Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells , 2008 .

[44]  O. Inganäs,et al.  An easily accessible isoindigo-based polymer for high-performance polymer solar cells. , 2011, Journal of the American Chemical Society.

[45]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[46]  Yingying Fu,et al.  Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers , 2011 .

[47]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[48]  Yongfang Li,et al.  Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry , 2008 .

[49]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[50]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[51]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[52]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[53]  J. Roncali,et al.  BODIPY derivatives as donor materials for bulk heterojunction solar cells. , 2009, Chemical communications.

[54]  Yongsheng Chen,et al.  A Planar Small Molecule with Dithienosilole Core for High Efficiency Solution-Processed Organic Photovoltaic Cells , 2011 .

[55]  Jian Pei,et al.  High-performance air-stable organic field-effect transistors: isoindigo-based conjugated polymers. , 2011, Journal of the American Chemical Society.

[56]  Kwanghee Lee,et al.  Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers , 2013 .

[57]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[58]  Yongfang Li,et al.  Synthesis and photovoltaic properties of a solution-processable organic molecule containing triphenylamine and DCM moieties , 2007 .

[59]  Y. Zou,et al.  A solution-processable D–A–D small molecule based on isoindigo for organic solar cells , 2013, Journal of Materials Science.

[60]  K. Wei,et al.  A Thieno[3,4-c]pyrrole-4,6-dione-Based Donor-Acceptor Polymer Exhibiting High Crystallinity for Photovoltaic Applications , 2010 .