Algorithmic aspects of clique-transversal and clique-independent sets

Abstract A minimum clique-transversal set MCT ( G ) of a graph G =( V , E ) is a set S ⊆ V of minimum cardinality that meets all maximal cliques in G . A maximum clique-independent set MCI ( G ) of G is a set of maximum number of pairwise vertex-disjoint maximal cliques. We prove that the problem of finding an MCT ( G ) and an MCI ( G ) is NP -hard for cocomparability, planar, line and total graphs. As an interesting corollary we obtain that the problem of finding a minimum number of elements of a poset to meet all maximal antichains of the poset remains NP -hard even if the poset has height two, thereby generalizing a result of Duffas et al. (J. Combin. Theory Ser. A 58 (1991) 158–164). We present a polynomial algorithm for the above problems on Helly circular-arc graphs which is the first such algorithm for a class of graphs that is not clique-perfect . We also present polynomial algorithms for the weighted version of the clique-transversal problem on strongly chordal graphs, chordal graphs of bounded clique size, and cographs. The algorithms presented run in linear time for strongly chordal graphs and cographs. These mark the first attempts at the weighted version of the problem.

[1]  G. Nemhauser,et al.  The k-Domination and k-Stability Problems on Sun-Free Chordal Graphs , 1984 .

[2]  Zsolt Tuza,et al.  Neighborhood perfect graphs , 1986, Discret. Math..

[3]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[4]  Martin Farber,et al.  Domination, independent domination, and duality in strongly chordal graphs , 1984, Discret. Appl. Math..

[5]  Zsolt Tuza,et al.  Covering all cliques of a graph , 1991, Discret. Math..

[6]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[7]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[8]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[9]  Mihalis Yannakakis,et al.  The Maximum k-Colorable Subgraph Problem for Chordal Graphs , 1987, Inf. Process. Lett..

[10]  Zsolt Tuza,et al.  Clique-transversal sets of line graphs and complements of line graphs , 1991, Discret. Math..

[11]  C. Pandu Rangan,et al.  Clique Transversal and Clique Independence on Comparability Graphs , 1996, Inf. Process. Lett..

[12]  Frank Harary,et al.  Graph Theory , 2016 .

[13]  Gerard J. Chang,et al.  Algorithmic Aspects of the Generalized Clique-transversal Problem on Chordal Graphs , 1996, Discret. Appl. Math..

[14]  Joseph Douglas Horton,et al.  Minimum Edge Dominating Sets , 1993, SIAM J. Discret. Math..

[15]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[16]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[17]  Hal A. Kierstead,et al.  Fibres and ordered set coloring , 1991, J. Comb. Theory, Ser. A.

[18]  Zbigniew Lonc,et al.  Chains, antichains, and fibres , 1987, J. Comb. Theory, Ser. A.

[19]  Jean Fonlupt,et al.  The complexity of generalized clique covering , 1989, Discret. Appl. Math..

[20]  A. Hoffman,et al.  Totally-Balanced and Greedy Matrices , 1985 .

[21]  Martin Farber,et al.  Characterizations of strongly chordal graphs , 1983, Discret. Math..

[22]  Zsolt Tuza,et al.  Algorithmic Aspects of Neighborhood Numbers , 1993, SIAM J. Discret. Math..

[23]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..