Surface reconstructions and related local properties of a BiFeO3 thin film

Coupling between lattice and order parameters, such as polarization in ferroelectrics and/or polarity in polar structures, has a strong impact on surface relaxation and reconstruction. However, up to now, surface structures that involve the termination of both matrix polarization and polar atomic planes have received little attention, particularly on the atomic scale. Here, we study surface structures on a BiFeO3 thin film using atomic-resolution scanning transmission electron microscopy and spectroscopy. Two types of surface structure are found, depending on the polarization of the underlying ferroelectric domain. On domains that have an upward polarization component, a layer with an Aurivillius-Bi2O2-like structural unit is observed. Dramatic changes in local properties are measured directly below the surface layer. On domains that have a downward polarization component, no reconstructions are visible. Calculations based on ab initio density functional theory reproduce the results and are used to interpret the formation of the surface structures.

[1]  S. Woodley,et al.  Interlayer Cation Exchange Stabilizes Polar Perovskite Surfaces , 2014, Advanced materials.

[2]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[3]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[4]  R. Ramesh,et al.  A Strain-Driven Morphotropic Phase Boundary in BiFeO3 , 2009, Science.

[5]  N. Spaldin,et al.  Strain-induced isosymmetric phase transition in BiFeO 3 , 2009, 0909.4979.

[6]  Eiji Abe,et al.  Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. , 2011, Nature materials.

[7]  P. Gao,et al.  Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films , 2016, Nature Communications.

[8]  S. P. Chen Compositional and physical changes on perovskite crystal surfaces , 1998 .

[9]  András Kovács,et al.  FEI Titan G2 80-200 CREWLEY , 2016 .

[10]  D. Morgan,et al.  Ab initio defect energetics of perovskite (001) surfaces for solid oxide fuel cells: A comparative study of LaMn O 3 versus SrTi O 3 and LaAl O 3 , 2015 .

[11]  U. V. Waghmare,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2005 .

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  James M Rondinelli,et al.  Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films , 2013, Nature Communications.

[14]  Lu Lu,et al.  Atomic structures of planar defects in 0.95(Na0.5Bi0.5)TiO3–0.05BaTiO3 lead-free piezoelectric thin films , 2015 .

[15]  L. Marks,et al.  A homologous series of structures on the surface of SrTiO3(110). , 2010, Nature materials.

[16]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[17]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[18]  X. Wan,et al.  Magnetic ordering induced giant optical property change in tetragonal BiFeO3 , 2015, Scientific Reports.

[19]  M. Chi,et al.  Understanding Strain‐Induced Phase Transformations in BiFeO3 Thin Films , 2015, Advanced science.

[20]  S. J. Pennycook,et al.  Incoherent imaging of crystals using thermally scattered electrons , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  L. Houben,et al.  FEI Titan G3 50-300 PICO , 2015 .

[22]  S. Ismail-Beigi,et al.  Ferroelectrics: A pathway to switchable surface chemistry and catalysis , 2016 .

[23]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[24]  S. Feng,et al.  Engineering the surface of perovskite La(0.5)Sr(0.5)MnO3 for catalytic activity of CO oxidation. , 2014, Chemical communications.

[25]  C. Jia,et al.  Engineering 180° ferroelectric domains in epitaxial PbTiO3 thin films by varying the thickness of the underlying (La,Sr)MnO3 layer , 2014 .

[26]  Chan,et al.  Density-functional energies and forces with Gaussian-broadened fractional occupations. , 1994, Physical review. B, Condensed matter.

[27]  Nicola A. Spaldin,et al.  Origin of the dielectric dead layer in nanoscale capacitors , 2006, Nature.

[28]  J. Maier,et al.  Semi-empirical simulations of surface relaxation for perovskite titanates , 2000 .

[29]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[30]  A. Tagantsev,et al.  Ferroelectric translational antiphase boundaries in nonpolar materials , 2014, Nature Communications.

[31]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[32]  G. Tallarida,et al.  Surface Segregation Mechanisms in Ferroelectric Thin Films , 2003 .

[33]  M. Venkatesan,et al.  Magnetic Analysis of Polar and Nonpolar Oxide Substrates , 2014, IEEE Transactions on Magnetics.

[34]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[35]  J. Neaton,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO3 , 2005 .

[36]  C. Noguera,et al.  Polar oxide surfaces , 2000 .

[37]  M. Alexe,et al.  Nanoscale Bi2FeO6−x precipitates in BiFeO3 thin films: a metastable Aurivillius phase , 2014, Journal of Materials Science.

[38]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[39]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[40]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[41]  Lu You,et al.  Low‐Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films , 2011 .

[42]  Jianglong Wang,et al.  Oxygen vacancy configuration of δ‐Bi2O3: an ab initio study , 2009 .

[43]  G. Botton,et al.  Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM , 2012, Nature.

[44]  M. Viret,et al.  Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. , 2008, Physical review letters.

[45]  David S. McPhail,et al.  Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials , 2014 .

[46]  P. Gao,et al.  Atomic scale structure changes induced by charged domain walls in ferroelectric materials. , 2013, Nano letters.

[47]  M Chi,et al.  Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO3 Films , 2013, Advanced materials.

[48]  D. Hesse,et al.  Stabilization of ferromagnetic order in La(0.7)Sr(0.3)MnO3-SrRuO3 Superlattices. , 2012, Nano letters.

[49]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[50]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[51]  C. Noguera,et al.  Polarity in oxide nano-objects. , 2013, Chemical reviews.

[52]  G. Tallarida,et al.  Surface Segregation Mechanisms in Dielectric Thin Films , 2004 .

[53]  Shan X. Wang,et al.  Nanoscale control of exchange bias with BiFeO3 thin films. , 2008, Nano letters.

[54]  M. Khan,et al.  Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review , 2016 .

[55]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[56]  D. Morgan,et al.  Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells , 2012 .

[57]  Michael Faley,et al.  Oxygen octahedron reconstruction in the SrTiO 3 /LaAlO 3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy , 2009 .

[58]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.