Early Mission Design of Transfers to Halo Orbits via Particle Swarm Optimization

Particle Swarm Optimization (PSO) is used to prune the search space of a low-thrust trajectory transfer from a high-altitude, Earth orbit to a Lagrange point orbit in the Earth-Moon system. Unlike a gradient based approach, this evolutionary PSO algorithm is capable of avoiding undesirable local minima. The PSO method is extended to a “local” version and uses a two dimensional search space that is capable of reducing the computation run-time by an order of magnitude when compared with published work. A technique for choosing appropriate PSO parameters is demonstrated and an example of an optimized trajectory is discussed.

[1]  Alessandro Antonio Quarta,et al.  Optimal Interplanetary Rendezvous Combining Electric Sail and High Thrust Propulsion System , 2011 .

[2]  David C. Redding Highly efficient, very low-thrust transfer to geosynchronous orbit -Exact and approximate solutions , 1982 .

[3]  D. Redding,et al.  Optimal low-thrust transfers to synchronous orbit , 1984 .

[4]  K. Howell,et al.  Design of transfer trajectories between resonant orbits in the Earth–Moon restricted problem , 2014 .

[5]  A. L. Herman,et al.  Optimal, Low-Thrust Earth-Orbit Transfers Using Higher-Order Collocation Methods , 2002 .

[6]  Francesco Topputo,et al.  Combined Optimal Low‐Thrust and Stable‐Manifold Trajectories to the Earth‐Moon Halo Orbits , 2007 .

[7]  Daniel J. Scheeres,et al.  Optimal transfers between unstable periodic orbits using invariant manifolds , 2011 .

[8]  Bruce A. Conway,et al.  Particle Swarm Optimization Applied to Space Trajectories , 2010 .

[9]  Shane D. Ross,et al.  Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. , 2000, Chaos.

[10]  R. W. Farquhar,et al.  Quasi-periodic orbits about the translunar libration point , 1972 .

[11]  J. Masdemont,et al.  QUASIHALO ORBITS ASSOCIATED WITH LIBRATION POINTS , 1998 .

[12]  Bruce A. Conway,et al.  Spacecraft Trajectory Optimization: Contents , 2010 .

[13]  B. Conway Spacecraft Trajectory Optimization , 2014 .

[14]  R. W. Farquhar,et al.  A halo-orbit lunar station. , 1972 .

[15]  Vassilis Angelopoulos,et al.  The ARTEMIS Mission , 2011 .

[16]  Andrew J. Abraham Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers , 2014 .

[17]  F. Topputo,et al.  Transfers to distant periodic orbits around the Moon via their invariant manifolds , 2012 .

[18]  Bruce A. Conway,et al.  Optimization of very-low-thrust, many-revolution spacecraft trajectories , 1994 .

[19]  T. Heppenheimer Steps toward space colonization - Colony location and transfer trajectories , 1978 .

[20]  Stephen B. Broschart,et al.  ARTEMIS Mission Design , 2011 .

[21]  J. Hopkins,et al.  Plymouth Rock: Early Human Missions to Near Earth Asteroids Using Orion Spacecraft , 2010 .

[22]  Robert W. Farquhar,et al.  Lunar communications with libration-point satellites. , 1967 .

[23]  K. Howell,et al.  Low-Thrust Transfers in the Earth-Moon System, Including Applications to Libration Point Orbits , 2010 .

[24]  F. Topputo,et al.  Numerical Methods to Design Low-Energy, Low-Thrust Sun-Perturbed Transfers to the Moon , 2009 .

[25]  V. Szebehely,et al.  Theory of Orbits: The Restricted Problem of Three Bodies , 1967 .

[26]  Bilel Daoud,et al.  Minimum fuel control of the planar circular restricted three-body problem , 2012 .

[27]  Advanced modeling of optimal low-thrust lunar pole-sitter trajectories , 2010 .

[28]  E. Butcher,et al.  Transfers to Earth-Moon L3 halo orbits , 2012 .