Gaussian sum unscented Kalman filter with adaptive scaling parameters

The paper deals with state estimation of nonlinear non-Gaussian discrete dynamic systems by a bank of unscented Kalman filters. The stress is laid on an adaptive choice of a scaling parameter of the unscented Kalman filters to increase estimate quality over the standard Gaussian sum unscented Kalman filter. Several optimization criteria for adapting the scaling parameter are proposed and discussed and to apply the scaling parameter adaptation within the Gaussian sum framework, three adaptation procedures are proposed. Performance of the proposed estimation methods is analyzed through the root mean square error and non-credibility index in a numerical example.

[1]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[2]  James V. Candy,et al.  Bayesian Signal Processing , 2009 .

[3]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[4]  Ondrej Straka,et al.  Distance-based pruning for Gaussian sum method in non-Gaussian system state estimation , 2005 .

[5]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[6]  Rudolph van der Merwe,et al.  Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[7]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[8]  Ondrej Straka,et al.  Adaptive choice of scaling parameter in derivative-free local filters , 2010, 2010 13th International Conference on Information Fusion.

[9]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[10]  Ondrej Straka,et al.  Nonlinear Filtering Methods: Some Aspects and Performance Evaluation , 2003, Modelling, Identification and Control.

[11]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[12]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[13]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[14]  T. Schei A finite-difference method for linearization in nonlinear estimation algorithms , 1998 .

[15]  Lin Cai,et al.  Two Efficient Implementation Forms of Unscented Kalman Filter , 2007, 2007 IEEE International Conference on Control and Automation.

[16]  W. Marsden I and J , 2012 .

[17]  Jindrich Duník,et al.  Derivative-free estimation methods: New results and performance analysis , 2009, Autom..

[18]  X. Rong Li,et al.  Measuring Estimator's Credibility: Noncredibility Index , 2006, 2006 9th International Conference on Information Fusion.

[19]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[20]  Torsten Söderström,et al.  Anticipative grid design in point-mass approach to nonlinear state estimation , 2002, IEEE Trans. Autom. Control..

[21]  Erik Blasch,et al.  Nonlinear tracking evaluation using absolute and relative metrics , 2006, SPIE Defense + Commercial Sensing.

[22]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[23]  Jindrich Dunik,et al.  SIGMA POINT GAUSSIAN SUM FILTER DESIGN USING SQUARE ROOT UNSCENTED FILTERS , 2005 .

[24]  J. Dunik,et al.  Performance analysis of derivative-free filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[26]  Miroslav Šimandl,et al.  Filtering, Prediction and Smoothing with Gaussian Sum Representation , 2000 .