Investigating the impact of adaptation sampling in natural evolution strategies on black-box optimization testbeds
暂无分享,去创建一个
[1] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[2] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[3] Tom Schaul,et al. Stochastic search using the natural gradient , 2009, ICML '09.
[4] Tom Schaul,et al. Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[5] Raymond Ros,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .
[6] Isao Ono,et al. Proposal of distance-weighted exponential natural evolution strategies , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).
[7] Tom Schaul,et al. Natural evolution strategies converge on sphere functions , 2012, GECCO '12.
[8] Anne Auger,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .
[9] K. Price. Differential evolution vs. the functions of the 2/sup nd/ ICEO , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[10] Tom Schaul,et al. Benchmarking exponential natural evolution strategies on the noiseless and noisy black-box optimization testbeds , 2012, GECCO '12.
[11] Tom Schaul,et al. Studies in Continuous Black-box Optimization , 2011 .
[12] Tom Schaul,et al. Benchmarking natural evolution strategies with adaptation sampling on the noiseless and noisy black-box optimization testbeds , 2012, GECCO '12.
[13] Tom Schaul,et al. A Natural Evolution Strategy for Multi-objective Optimization , 2010, PPSN.
[14] Tom Schaul,et al. Exponential natural evolution strategies , 2010, GECCO '10.