Dispersion analysis and engineering in TiN 2D plasmonic waveguides

An investigation has been performed of the low order guided modes in TiN 2D hollow metallic waveguide. The dispersion characteristics of the TiN 2D hollow metallic waveguides key guided modes are identified and analyzed. Dispersion manipulating is proposed by changing the material of the cladding region. The dispersion analysis of 2D plasmonic waveguide using TiN has been investigated for the first time and compared to that of silver. A study has been conducted on the effect of varying the material on the cutoff in the modes dispersion. The effect of changing the plasmonic material on the dispersion curve key characteristics is also identified. Finally the effect of shifting the cutoff on the enhanced transmission phenomena is investigated.

[1]  Reuven Gordon,et al.  Increased cut-off wavelength for a subwavelength hole in a real metal. , 2005, Optics express.

[2]  Soon T Lim,et al.  Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments. , 2007, Optics express.

[3]  S. Maier,et al.  Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Jianguo Tian,et al.  Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics. , 2013, Optics express.

[5]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[6]  Bing Wang,et al.  Surface plasmon polariton propagation in nanoscale metal gap waveguides. , 2004, Optics letters.

[7]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[8]  S. Maier,et al.  Plasmonics: The Promise of Highly Integrated Optical Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[10]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[11]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[12]  Mohamed A Swillam,et al.  Analysis and applications of 3D rectangular metallic waveguides. , 2010, Optics express.

[13]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[14]  T. Gaylord,et al.  Multimode metal-insulator-metal waveguides: Analysis and experimental characterization , 2012 .

[15]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[17]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[18]  Byoungho Lee,et al.  Trapping light in plasmonic waveguides. , 2010, Optics express.

[19]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[20]  Esteban Moreno,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[21]  Mohamed A. Swillam,et al.  Dispersion analysis and engineering of 2D plasmonic waveguides , 2014 .

[22]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[23]  Luis Martín-Moreno,et al.  Transmission of light through a single rectangular hole in a real metal , 2006 .

[24]  Vinet,et al.  Guided optical waves in planar heterostructures with negative dielectric constant. , 1991, Physical review. B, Condensed matter.

[25]  Haifeng Hu,et al.  Polarization-Insensitive Metal–Semiconductor–Metal Nanoplasmonic Structures for Ultrafast Ultraviolet Detectors , 2013, Plasmonics.

[26]  Filbert J. Bartoli,et al.  A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing , 2013 .

[27]  Shanhui Fan,et al.  Modal analysis and coupling in metal-insulator-metal waveguides , 2008, 0809.2850.

[28]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[29]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[30]  L. Rayleigh III. Note on the remarkable case of diffraction spectra described by Prof. Wood , 1907 .

[31]  John William Strutt Scientific Papers: Note on the remarkable case of Diffraction Spectra described by Prof. Wood , 2009 .

[32]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[33]  Y. Kivshar,et al.  Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides , 2010 .

[34]  J. Weiner,et al.  The physics of light transmission through subwavelength apertures and aperture arrays , 2009, 2009 Optical Data Storage Topical Meeting.

[35]  P. Berini Long-range surface plasmon polaritons , 2009 .

[36]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[37]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[38]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[39]  E. Economou Surface Plasmons in Thin Films , 1969 .

[40]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[41]  Malin Premaratne,et al.  Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. , 2010, Optics express.

[42]  Ewold Verhagen,et al.  Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries. , 2008, Optics express.

[43]  Stefan A. Maier,et al.  Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides , 2006 .

[44]  K. Crozier,et al.  Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index. , 2009, Optics express.