Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons

The thermoelectric properties of hybrid graphene/boron nitride nanoribbons (BCNNRs) are investigated using the nonequilibrium Green’s function approach. We find that the thermoelectric figure of merit (ZT ) can be remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs with width index 3p + 2 is enhanced 10–20 times, while the ZT of nanoribbons with other widths is enhanced by just 1.5–3 times. As for zigzag-edge nanoribbons, the ZT is enhanced 2–3 times. This improvement comes from the combined increase in the Seebeck coefficient and the reduction in the thermal conductance outweighing the decrease in the electrical conductance. In addition, the effect of the component ratio of h-BN on the thermoelectric transport properties is discussed. These results qualify BCNNRs as a promising candidate for building outstanding thermoelectric devices.

[1]  J. Zhong,et al.  Thermal transport in hexagonal boron nitride nanoribbons , 2010, Nanotechnology.

[2]  Peng Wei,et al.  Anomalous thermoelectric transport of Dirac particles in graphene. , 2008, Physical review letters.

[3]  Cohen,et al.  Calculation of electronic and structural properties of BC3. , 1988, Physical review. B, Condensed matter.

[4]  Jing Guo,et al.  Bandgap opening in boron nitride confined armchair graphene nanoribbon , 2011 .

[5]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[6]  L. Wirtz,et al.  Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene , 2008, 0808.1467.

[7]  Jian-Sheng Wang,et al.  Minimum thermal conductance in graphene and boron nitride superlattice , 2011, 1108.5806.

[8]  T. Taniguchi,et al.  Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. , 2007, Physical review letters.

[9]  R. Car,et al.  Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions , 1999 .

[10]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[11]  M. Lazzeri,et al.  Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions , 2009, Physical Review B.

[12]  Á. Rubio Hybridized graphene: Nanoscale patchworks. , 2010, Nature materials.

[13]  P. Dollfus,et al.  Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons , 2011 .

[14]  P. Ajayan,et al.  Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen , 1994, Science.

[15]  S. Sarma,et al.  Carrier transport in two-dimensional graphene layers. , 2006, Physical review letters.

[16]  L. Wirtz,et al.  Ab initio calculations of the lattice dynamics of boron nitride nanotubes , 2003 .

[17]  R. W. Nunes,et al.  Electronic structure and energetics ofBxCyNzlayered structures , 2006 .

[18]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[20]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[21]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[22]  Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. , 2006, Physical review letters.

[23]  Gang Zhang,et al.  Size dependent thermoelectric properties of silicon nanowires , 2009 .

[24]  Á. Rubio,et al.  The physical and chemical properties of heteronanotubes , 2010 .

[25]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[26]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[27]  G. Liang,et al.  Stability and electronic structure of two dimensional Cx(BN)y compound , 2011 .

[28]  Jinlong Yang,et al.  Half-metallicity in hybrid BCN nanoribbons. , 2008, The Journal of chemical physics.

[29]  L. Wirtz,et al.  The phonon dispersion of graphite revisited , 2004, cond-mat/0404637.

[30]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[31]  G. Kresse,et al.  Comment on "huge excitonic effects in layered hexagonal boron nitride". , 2008, Physical review letters.

[32]  Jian-Sheng Wang,et al.  Coupled electron and phonon transport in one-dimensional atomic junctions , 2007, 0704.0723.

[33]  Jian Wang,et al.  Nernst and Seebeck effects in a graphene nanoribbon , 2009, 1011.2666.

[34]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[35]  Shao-ping Lu,et al.  Quantum conductance of graphene nanoribbons with edge defects , 2006, cond-mat/0609009.

[36]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[37]  Gengchiau Liang,et al.  Theoretical study on thermoelectric properties of kinked graphene nanoribbons , 2011 .

[38]  Yanli Wang,et al.  Electronic properties of graphene nanoribbons embedded in boron nitride sheets , 2009 .

[39]  J. Zhong,et al.  Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons , 2010 .

[40]  Jian-Sheng Wang,et al.  Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons , 2009 .

[41]  P. Kim,et al.  Thermoelectric and magnetothermoelectric transport measurements of graphene. , 2008, Physical review letters.

[42]  Xiaolin Wei,et al.  Effect of triangle vacancy on thermal transport in boron nitride nanoribbons , 2011 .

[43]  H. Chacham,et al.  Disorder and segregation in B-C-N graphene-type layers and nanotubes: tuning the band gap. , 2011, ACS nano.

[44]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[45]  N. Mingo Anharmonic phonon flow through molecular-sized junctions , 2006 .

[46]  Miyamoto,et al.  Chiral tubules of hexagonal BC2N. , 1994, Physical review. B, Condensed matter.

[47]  Y. Xiao,et al.  Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes , 2004 .

[48]  S. Itoh,et al.  Structural stability of BC2N , 1996 .

[49]  Jing Guo,et al.  A theoretical study on thermoelectric properties of graphene nanoribbons , 2009 .

[50]  Gang Chen,et al.  Enhanced thermoelectric figure of merit of p-type half-Heuslers. , 2011, Nano letters.

[51]  Liu,et al.  Atomic arrangement and electronic structure of BC2N. , 1989, Physical review. B, Condensed matter.