Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework

Subspace clustering refers to the problem of segmenting data drawn from a union of subspaces. State-of-the-art approaches for solving this problem follow a two-stage approach. In the first step, an affinity matrix is learned from the data using sparse or low-rank minimization techniques. In the second step, the segmentation is found by applying spectral clustering to this affinity. While this approach has led to the state-of-the-art results in many applications, it is suboptimal, because it does not exploit the fact that the affinity and the segmentation depend on each other. In this paper, we propose a joint optimization framework — Structured Sparse Subspace Clustering (S3C) — for learning both the affinity and the segmentation. The proposed S3C framework is based on expressing each data point as a structured sparse linear combination of all other data points, where the structure is induced by a norm that depends on the unknown segmentation. Moreover, we extend the proposed S3C framework into Constrained S3C (CS3C) in which available partial side-information is incorporated into the stage of learning the affinity. We show that both the structured sparse representation and the segmentation can be found via a combination of an alternating direction method of multipliers with spectral clustering. Experiments on a synthetic data set, the Extended Yale B face data set, the Hopkins 155 motion segmentation database, and three cancer data sets demonstrate the effectiveness of our approach.

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[4]  Zhang Yi,et al.  Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[5]  Emmanuel J. Candès,et al.  A Geometric Analysis of Subspace Clustering with Outliers , 2011, ArXiv.

[6]  Jian Yang,et al.  Identifying Subspace Gene Clusters from Microarray Data Using Low-Rank Representation , 2013, PloS one.

[7]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[8]  Gilad Lerman,et al.  Median K-Flats for hybrid linear modeling with many outliers , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[9]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[10]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Frank Nielsen,et al.  SSSC-AM: A unified framework for video co-segmentation by structured sparse subspace clustering with appearance and motion features , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[12]  T. Boult,et al.  Factorization-based segmentation of motions , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[13]  Shuicheng Yan,et al.  Correntropy Induced L2 Graph for Robust Subspace Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[14]  Yudong Chen,et al.  Clustering Partially Observed Graphs via Convex Optimization , 2011, ICML.

[15]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[16]  Huchuan Lu,et al.  Subspace clustering by Mixture of Gaussian Regression , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  P. Tseng Nearest q-Flat to m Points , 2000 .

[18]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[19]  Allen Y. Yang,et al.  Robust Statistical Estimation and Segmentation of Multiple Subspaces , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[20]  Honggang Zhang,et al.  Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[21]  Paul S. Bradley,et al.  k-Plane Clustering , 2000, J. Glob. Optim..

[22]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[23]  Eric Bair,et al.  Semi‐supervised clustering methods , 2013, Wiley interdisciplinary reviews. Computational statistics.

[24]  A. Schulze,et al.  Navigating gene expression using microarrays — a technology review , 2001, Nature Cell Biology.

[25]  Jianjiang Feng,et al.  Smooth Representation Clustering , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[27]  Honggang Zhang,et al.  Learning Bundle Manifold by Double Neighborhood Graphs , 2009, ACCV.

[28]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[29]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  René Vidal,et al.  Latent Space Sparse Subspace Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[31]  Wei Pan,et al.  Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data , 2006, Bioinform..

[32]  Francis R. Bach,et al.  Trace Lasso: a trace norm regularization for correlated designs , 2011, NIPS.

[33]  Zhang Yi,et al.  Scalable Sparse Subspace Clustering , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  A. Orth,et al.  Large-scale analysis of the human and mouse transcriptomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Yair Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[36]  Emmanuel J. Candès,et al.  Robust Subspace Clustering , 2013, ArXiv.

[37]  Lei Liu,et al.  Knowledge guided analysis of microarray data , 2006, J. Biomed. Informatics.

[38]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[40]  Shuicheng Yan,et al.  Correlation Adaptive Subspace Segmentation by Trace Lasso , 2013, 2013 IEEE International Conference on Computer Vision.

[41]  Feiping Nie,et al.  Multi-Subspace Representation and Discovery , 2011, ECML/PKDD.

[42]  Michel Verleysen,et al.  Mixtures of robust probabilistic principal component analyzers , 2008, ESANN.

[43]  John Wright,et al.  Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Nabil H. Mustafa,et al.  k-means projective clustering , 2004, PODS.

[45]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[46]  KanadeTakeo,et al.  Shape and motion from image streams under orthography , 1992 .

[47]  Ping Li,et al.  Online Low-Rank Subspace Clustering by Basis Dictionary Pursuit , 2015, ICML.

[48]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[49]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[50]  Xiaojie Guo,et al.  Robust Subspace Segmentation by Simultaneously Learning Data Representations and Their Affinity Matrix , 2015, IJCAI.

[51]  Laurent Bako,et al.  Identification of switched linear systems via sparse optimization , 2011, Autom..

[52]  René Vidal,et al.  Structured Sparse Subspace Clustering: A unified optimization framework , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[54]  René Vidal,et al.  Sparse Manifold Clustering and Embedding , 2011, NIPS.

[55]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[56]  Michael Tschannen,et al.  Noisy Subspace Clustering via Matching Pursuits , 2018, IEEE Transactions on Information Theory.

[57]  René Vidal,et al.  Algebraic Clustering of Affine Subspaces , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Gilad Lerman,et al.  Hybrid Linear Modeling via Local Best-Fit Flats , 2010, International Journal of Computer Vision.

[59]  Aarti Singh,et al.  Graph Connectivity in Noisy Sparse Subspace Clustering , 2015, AISTATS.

[60]  Kun Huang,et al.  Multiscale Hybrid Linear Models for Lossy Image Representation , 2006, IEEE Transactions on Image Processing.

[61]  Jiong Yang,et al.  Microarray data mining using landmark gene-guided clustering , 2008, BMC Bioinformatics.

[62]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Helmut Bölcskei,et al.  Robust Subspace Clustering via Thresholding , 2013, IEEE Transactions on Information Theory.

[64]  Kun Huang,et al.  Minimum effective dimension for mixtures of subspaces: a robust GPCA algorithm and its applications , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[65]  John Wright,et al.  Segmentation of multivariate mixed data via lossy coding and compression , 2007, Electronic Imaging.

[66]  Daniel P. Robinson,et al.  Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Shuicheng Yan,et al.  Robust and Efficient Subspace Segmentation via Least Squares Regression , 2012, ECCV.

[68]  Nebojsa Jojic,et al.  -Sparse Subspace Clustering , 2016 .

[69]  Horst Bischof,et al.  Multiple eigenspaces , 2002, Pattern Recognit..

[70]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[71]  S. Gong,et al.  Person Re-Identification by Unsupervised \ell _1 ℓ 1 Graph Learning , 2016, ECCV.

[72]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[73]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[74]  René Vidal,et al.  Clustering disjoint subspaces via sparse representation , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[75]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[76]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[77]  Ying Wu,et al.  Multibody Grouping by Inference of Multiple Subspaces from High-Dimensional Data Using Oriented-Frames , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  René Vidal,et al.  Ieee Journal of Selected Topics in Signal Processing, Vol. X, No. X, Month 20xx 1 Latent Space Sparse and Low-rank Subspace Clustering , 2022 .

[80]  René Vidal,et al.  Kernel sparse subspace clustering , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[81]  Aarti Singh,et al.  A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data , 2015, ICML.

[82]  S. Shankar Sastry,et al.  Generalized Principal Component Analysis , 2016, Interdisciplinary applied mathematics.

[83]  Daniel P. Robinson,et al.  Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[84]  René Vidal,et al.  Segmenting Motions of Different Types by Unsupervised Manifold Clustering , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[85]  Allen Y. Yang,et al.  Estimation of Subspace Arrangements with Applications in Modeling and Segmenting Mixed Data , 2008, SIAM Rev..

[86]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[87]  Shuicheng Yan,et al.  Convex Sparse Spectral Clustering: Single-View to Multi-View , 2015, IEEE Transactions on Image Processing.

[88]  Zhang Yi,et al.  Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering , 2012, IEEE Transactions on Cybernetics.

[89]  Junbin Gao,et al.  Relations Among Some Low-Rank Subspace Recovery Models , 2014, Neural Computation.

[90]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[91]  Huan Xu,et al.  Noisy Sparse Subspace Clustering , 2013, J. Mach. Learn. Res..

[92]  René Vidal,et al.  A Structured Sparse Plus Structured Low-Rank Framework for Subspace Clustering and Completion , 2016, IEEE Transactions on Signal Processing.

[93]  René Vidal,et al.  Motion Segmentation in the Presence of Outlying, Incomplete, or Corrupted Trajectories , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Cheng Soon Ong,et al.  Multivariate spearman's ρ for aggregating ranks using copulas , 2016 .

[95]  Aswin C. Sankaranarayanan,et al.  Greedy feature selection for subspace clustering , 2013, J. Mach. Learn. Res..

[96]  Giovanni Montana,et al.  Subspace clustering of high-dimensional data: a predictive approach , 2012, Data Mining and Knowledge Discovery.

[97]  Huan Xu,et al.  Provable Subspace Clustering: When LRR Meets SSC , 2013, IEEE Transactions on Information Theory.

[98]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[99]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[100]  Shuicheng Yan,et al.  Robust Subspace Segmentation with Block-Diagonal Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[101]  Tieniu Tan,et al.  Robust Subspace Clustering via Half-Quadratic Minimization , 2013, 2013 IEEE International Conference on Computer Vision.

[102]  Svetha Venkatesh,et al.  Improved subspace clustering via exploitation of spatial constraints , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[103]  Constantine Caramanis,et al.  Greedy Subspace Clustering , 2014, NIPS.