Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential

[1]  Xinlei Liu,et al.  An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. , 2011, Angewandte Chemie.

[2]  L. F. Castillo,et al.  Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylen , 2011 .

[3]  J. M. Zamaro,et al.  Combination of MOFs and zeolites for mixed-matrix membranes. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  B. C. Ng,et al.  Recent advances of inorganic fillers in mixed matrix membrane for gas separation , 2011 .

[5]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[6]  J. M. Zamaro,et al.  Insight into the crystal synthesis, activation and application of ZIF-20 , 2011 .

[7]  J. Caro,et al.  Are MOF membranes better in gas separation than those made of zeolites , 2011 .

[8]  Ting Yang,et al.  Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification , 2011 .

[9]  S. Basu,et al.  MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations , 2011 .

[10]  Omid Ghaffari Nik,et al.  Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO 2/CH 4 separation , 2011 .

[11]  S. Kitagawa,et al.  Sequential functionalization of porous coordination polymer crystals. , 2011, Angewandte Chemie.

[12]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[13]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[14]  F. Kapteijn,et al.  Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering. , 2011, Chemical communications.

[15]  C. Serre,et al.  High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating. , 2011, Chemistry.

[16]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[17]  C. Téllez,et al.  Mixed matrix membranes for gas separation with special nanoporous fillers , 2011 .

[18]  C. Téllez,et al.  Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation , 2011 .

[19]  William J. Koros,et al.  Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation , 2011 .

[20]  Richard I. Walton,et al.  A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework , 2011 .

[21]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[22]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[23]  A. Ismail,et al.  Performance studies of mixed matrix membranes for gas separation: A review , 2010 .

[24]  Yong-ming Wei,et al.  Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2 MOF and Polyimide for Gas Separation and Adsorption , 2010 .

[25]  S. Basu,et al.  Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .

[26]  J. Ferraris,et al.  Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .

[27]  R. Masel,et al.  Effects of molecular sieving and electrostatic enhancement in the adsorption of organic compounds on the zeolitic imidazolate framework ZIF-8. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[28]  F. Kapteijn,et al.  Diffusion in Zeolites – Impact on Catalysis , 2010 .

[29]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[30]  D. Sholl,et al.  Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification , 2010 .

[31]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[32]  S. Jhung,et al.  Phase-Transition and Phase-Selective Synthesis of Porous Chromium-Benzenedicarboxylates , 2010 .

[33]  Gérard Férey,et al.  Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. , 2010, Angewandte Chemie.

[34]  J. Coronas Present and future synthesis challenges for zeolites , 2010 .

[35]  L. F. Castillo,et al.  CO2 Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation and PFG NMR Techniques , 2010 .

[36]  S. Basu,et al.  Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks , 2009 .

[37]  William J. Koros,et al.  Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. , 2009, Journal of the American Chemical Society.

[38]  Rajamani Krishna,et al.  Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials , 2009 .

[39]  C. Téllez,et al.  Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[40]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[41]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[42]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[43]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[44]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[45]  J. Caro,et al.  Butene isomers separation on titania supported MFI membranes at conditions relevant for practice , 2009 .

[46]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[47]  M. Tsapatsis,et al.  A semi-empirical approach for predicting the performance of mixed matrix membranes containing selective flakes , 2009 .

[48]  C. Téllez,et al.  Seeded synthesis of layered titanosilicate JDF-L1 , 2009 .

[49]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[50]  T. Uemura,et al.  Fabrication of two-dimensional polymer arrays: template synthesis of polypyrrole between redox-active coordination nanoslits. , 2008, Angewandte Chemie.

[51]  J. Ferraris,et al.  Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles , 2008 .

[52]  J. Caro,et al.  Zeolite membranes – Recent developments and progress , 2008 .

[53]  J. Greneche,et al.  Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. , 2008, Chemical communications.

[54]  Martin P Attfield,et al.  Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy. , 2008, Angewandte Chemie.

[55]  Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation , 2008 .

[56]  L. Robeson,et al.  The upper bound revisited , 2008 .

[57]  C. Serre,et al.  Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study. , 2008, Angewandte Chemie.

[58]  Freek Kapteijn,et al.  Separation and permeation characteristics of a DD3R zeolite membrane , 2008 .

[59]  P. Sozzani,et al.  Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace. , 2008, Journal of the American Chemical Society.

[60]  T. Uemura,et al.  Radical Copolymerizations of Vinyl Monomers in a Porous Coordination Polymer , 2008 .

[61]  J. Ferraris,et al.  Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .

[62]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[63]  T. Uemura,et al.  Radical Polymerization of Vinyl Monomers in Porous Coordination Polymers: Nanochannel Size Effects on Reactivity, Molecular Weight, and Stereostructure , 2008 .

[64]  Jean-Claude Charpentier,et al.  In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money) , 2007 .

[65]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[66]  T. Uemura,et al.  Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers. , 2007, Angewandte Chemie.

[67]  M. Tsapatsis,et al.  A model for the performance of microporous mixed matrix membranes with oriented selective flakes , 2007 .

[68]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.

[69]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[70]  J. Dalmon,et al.  Nanocomposite MFI-alumina membranes via pore-plugging synthesis , 2008 .

[71]  A. Car,et al.  Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation , 2006 .

[72]  T. Uemura,et al.  Polymerization in coordination nanospaces. , 2006, Chemistry, an Asian journal.

[73]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[74]  T. Uemura,et al.  Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers. , 2006, Angewandte Chemie.

[75]  C. Serre,et al.  An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis. , 2006, Chemical communications.

[76]  F. Kapteijn,et al.  Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane , 2006 .

[77]  T. Uemura,et al.  Radical polymerisation of styrene in porous coordination polymers. , 2005, Chemical communications.

[78]  J. Moulijn,et al.  Structured Catalysts and Reactors , 2005 .

[79]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[80]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[81]  R. Krishna,et al.  The effectiveness factor for zeolite catalysed reactions , 2005 .

[82]  J. Caro,et al.  Zeolite Membranes: From the Laboratory Scale to Technical Applications , 2005 .

[83]  J. Jegal,et al.  Coordination Compound Molecular Sieve Membranes , 2005 .

[84]  William J. Koros,et al.  Evolving beyond the thermal age of separation processes: Membranes can lead the way , 2004 .

[85]  S. Nair,et al.  Fabrication of polymer/selective-flake nanocomposite membranes and their use in gas separation , 2004 .

[86]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[87]  R. Snurr,et al.  Effects of molecular siting and adsorbent heterogeneity on the ideality of adsorption equilibria. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[88]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[89]  F. Kapteijn,et al.  Separation modeling of linear and branched C6 alkane permeation through silicalite-1 membranes , 2003 .

[90]  Stephen J. Miller,et al.  Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior , 2003 .

[91]  R. Mahajan,et al.  Challenges in forming successful mixed matrix membranes with rigid polymeric materials , 2002 .

[92]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[93]  R. Mahajan,et al.  Mixed Matrix Membrane Materials: An Answer to the Challenges Faced by Membrane Based Gas Separations Today? , 2002 .

[94]  J. E. Mark,et al.  Synthesis, structure, mechanical properties, and thermal stability of some polysulfone/organoclay nanocomposites , 2001 .

[95]  Jacob A. Moulijn,et al.  Chemical Process Technology , 2001 .

[96]  F. Kapteijn,et al.  The generalized Maxwell–Stefan model for diffusion in zeolites:: sorbate molecules with different saturation loadings , 2000 .

[97]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[98]  L. Robeson,et al.  Polymer Membranes for Gas Separation , 1999 .

[99]  Freek Kapteijn,et al.  Modeling permeation of binary mixtures through zeolite membranes , 1999 .

[100]  J. Santamaría,et al.  Separations Using Zeolite Membranes , 1999 .

[101]  F. Kapteijn,et al.  Methodological and operational aspects of permeation measurements on silicalite-1 membranes , 1998 .

[102]  William J. Koros,et al.  Tailoring mixed matrix composite membranes for gas separations , 1997 .

[103]  E. Drioli,et al.  Permeation through a heterogeneous membrane: the effect of the dispersed phase , 1997 .

[104]  W. Koros,et al.  Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles , 1997 .

[105]  W. Koros,et al.  Terminology for membranes and membrane processes (IUPAC Recommendations 1996) , 1996 .

[106]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[107]  I. Vankelecom,et al.  INCORPORATION OF ZEOLITES IN POLYIMIDE MEMBRANES , 1995 .

[108]  H. Kita,et al.  Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl‐substituted phenylenediamines , 1992 .

[109]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[110]  E. Cussler Membranes containing selective flakes , 1990 .

[111]  W. Koros,et al.  Selective permeation of CO2 and CH4 through kapton polyimide: Effects of penetrant competition and gas‐phase nonideality , 1984 .

[112]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .

[113]  R. M. Barrer,et al.  Diffusion in heterogeneous media: lattices of parallelepipeds in a continuous phase , 1961 .