Efficient entanglement concentration for quantum dot and optical microcavities systems

A recent paper (Chuan Wang in Phys Rev A 86:012323, 2012) discussed an entanglement concentration protocol (ECP) for partially entangled electrons using a quantum dot and microcavity coupled system. In his paper, each two-electron spin system in a partially entangled state can be concentrated with the assistance of an ancillary quantum dot and a single photon. In this paper, we will present an efficient ECP for such entangled electrons with the help of only one single photon. Compared with the protocol of Wang, the most significant advantage is that during the whole ECP, the single photon only needs to pass through one microcavity which will increase the total success probability if the cavity is imperfect. The whole protocol can be repeated to get a higher success probability. With the feasible technology, this protocol may be useful in current long-distance quantum communications.

[1]  C. Hu,et al.  Erratum: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity [Phys. Rev. B83, 115303 (2011)] , 2011 .

[2]  Yong Zhang,et al.  Multipartite electronic entanglement purification using quantum-dot spin and microcavity system , 2013, Quantum Inf. Process..

[3]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[4]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[5]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[6]  Tao Li,et al.  High-efficiency multipartite entanglement purification of electron-spin states with charge detection , 2012, Quantum Inf. Process..

[7]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[8]  ChuanLiang Wang Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system , 2012 .

[9]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[10]  Yu-Bo Sheng,et al.  Single-photon entanglement concentration for long-distance quantum communication , 2009, Quantum Inf. Comput..

[11]  Xing Xu,et al.  A Jurassic ceratosaur from China helps clarify avian digital homologies , 2009, Nature.

[12]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[13]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[14]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[15]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[16]  G. Guo,et al.  Optimal entanglement purification via entanglement swapping , 2000, quant-ph/0005125.

[17]  Zhang Yong Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities , 2011 .

[18]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Shou Zhang,et al.  Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED , 2011, Quantum Information Processing.

[20]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[21]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[22]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[23]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[24]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[25]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[26]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[29]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[30]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[31]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[32]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[33]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[34]  N. Imoto,et al.  A concentration/purification scheme for two partially entangled photon pairs , 2001, Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557).

[35]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[36]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[37]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.

[38]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[39]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.