Location of the Largest Empty Rectangle among Arbitrary Obstacles

This paper outlines the following generalization of the classical maximal-empty-rectangle (MER) problem: given n arbitrarily-oriented non-intersecting line segments of finite length on a rectangular floor, locate an empty isothetic rectangle of maximum area. Thus, the earlier restriction on isotheticity of the obstacles is relaxed. Based on the wellknown technique of matrix searching, a novel algorithm of time complexity O(nlog2n) and space complexity O(n), is proposed. Next, the technique is extended to handle the following two related open problems: locating the largest isothetic MER (i) inside an arbitrary simple polygon and (ii) amidst a set of arbitrary polygonal obstacles.