Intersection graphs and geometric objects in the plane

127

[1]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[2]  B. Poonen Characterizing integers among rational numbers with a universal-existential formula , 2007, math/0703907.

[3]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[4]  Matt Gibson,et al.  A Characterization of Visibility Graphs for Pseudo-polygons , 2015, ESA.

[5]  Stefan Felsner,et al.  Approximating hitting sets of axis-parallel rectangles intersecting a monotone curve , 2013, Comput. Geom..

[6]  Stefan Felsner,et al.  Grid Intersection Graphs and Order Dimension , 2015, Order.

[7]  Daniel Bienstock Some provably hard crossing number problems , 1991, Discret. Comput. Geom..

[8]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[9]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[10]  W. Schnyder Planar graphs and poset dimension , 1989 .

[11]  David R. Wood,et al.  On Visibility and Blockers , 2009, J. Comput. Geom..

[12]  David R. Wood,et al.  On the Chromatic Number of the Visibility Graph of a Set of Points in the Plane , 2005, Discret. Comput. Geom..

[13]  Stefan Felsner,et al.  Posets and planar graphs , 2005, J. Graph Theory.

[14]  Subir Kumar Ghosh,et al.  Some results on point visibility graphs , 2015, Theor. Comput. Sci..

[15]  Andreas Gleißner,et al.  Characterizations of Deque and Queue Graphs , 2011, WG.

[16]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[17]  Jean Cardinal,et al.  Recognition and Complexity of Point Visibility Graphs , 2015, Discret. Comput. Geom..

[18]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[19]  Alexandr V. Kostochka,et al.  Coloring Relatives of Intervals on the Plane, I: Chromatic Number Versus Girth , 1998, Eur. J. Comb..

[20]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[21]  Ju. V. Matijasevic,et al.  ENUMERABLE SETS ARE DIOPHANTINE , 2003 .

[22]  Asahi Takaoka,et al.  On Two Problems of Nano-PLA Design , 2011, IEICE Trans. Inf. Syst..

[23]  E. Lawler,et al.  Erratum: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1986 .

[24]  Gunter M. Ziegler,et al.  Realization spaces of 4-polytopes are universal , 1995 .

[25]  János Pach,et al.  Bounded-Degree Graphs can have Arbitrarily Large Slope Numbers , 2006, Electron. J. Comb..

[26]  R. Pollack,et al.  The intrinsic spread of a configuration in , 1990 .

[27]  Stefan Felsner,et al.  The Order Dimension of Planar Maps Revisited , 2014, SIAM J. Discret. Math..

[28]  Jean Cardinal,et al.  The Clique Problem in Ray Intersection Graphs , 2013, Discret. Comput. Geom..

[29]  Daniel Král,et al.  On Intersection Graphs of Segments with Prescribed Slopes , 2001, Graph Drawing.

[30]  Olivier Cogis,et al.  On the Ferrers dimension of a digraph , 1982, Discret. Math..

[31]  Jan Kyncl,et al.  Simple Realizability of Complete Abstract Topological Graphs in P , 2011, Discret. Comput. Geom..

[32]  Christian Bachmaier,et al.  Plane Drawings of Queue and Deque Graphs , 2010, Graph Drawing.

[33]  Satoshi Tayu,et al.  On orthogonal ray graphs , 2010, Discret. Appl. Math..

[34]  Piotr Micek,et al.  Outerplanar graph drawings with few slopes , 2014, Comput. Geom..

[35]  F. Sinden Topology of thin film RC circuits , 1966 .

[36]  Jirí Matousek,et al.  Bounded-Degree Graphs have Arbitrarily Large Geometric Thickness , 2006, Electron. J. Comb..

[37]  David R. Wood,et al.  Graph drawings with few slopes , 2007, Comput. Geom..

[38]  Joseph S. B. Mitchell,et al.  Orthogonal segment stabbing , 2005, Comput. Geom..

[39]  Sorin Istrail,et al.  The Clark Phase-able Sample Size Problem: Long-Range Phasing and Loss of Heterozygosity in GWAS , 2010, RECOMB.

[40]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[41]  Alexandr V. Kostochka,et al.  Colouring Relatives of Intervals on the Plane, II , 1998 .

[42]  Jürgen Richter-Gebert,et al.  Mnev's Universality Theorem revisited , 1995 .

[43]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[44]  Nobuji Saito,et al.  NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .

[45]  Louis Theran,et al.  Universality Theorems for Inscribed Polytopes and Delaunay Triangulations , 2014, Discret. Comput. Geom..

[46]  José R. Correa,et al.  Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line: Algorithms and Complexity , 2013, Discrete & Computational Geometry.

[47]  Marcus Schaefer,et al.  Complexity of Some Geometric and Topological Problems , 2009, GD.

[48]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[49]  Ron Y. Pinter,et al.  On the number of rectangulations of a planar point set , 2006, J. Comb. Theory A.

[50]  Timothy M. Chan,et al.  Exact algorithms and APX-hardness results for geometric packing and covering problems , 2014, Comput. Geom..

[51]  Stefan Felsner,et al.  On the Order Dimension of Outerplanar Maps , 2009, Order.

[52]  Jirí Matousek Blocking Visibility for Points in General Position , 2009, Discret. Comput. Geom..

[53]  James Abello,et al.  Visibility Graphs and Oriented Matroids , 1994, GD.

[54]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[55]  Richard Pollack,et al.  On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.

[56]  Yota Otachi,et al.  Intersection Dimension of Bipartite Graphs , 2014, TAMC.

[57]  Bernd Sturmfels,et al.  On the decidability of Diophantine problems in combinatorial geometry , 1987 .

[58]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2003, J. Comput. Syst. Sci..

[59]  Joseph O'Rourke,et al.  Vertex-edge pseudo-visibility graphs: characterization and recognition , 1997, SCG '97.

[60]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[61]  Subir Kumar Ghosh,et al.  Unsolved problems in visibility graphs of points, segments, and polygons , 2010, ACM Comput. Surv..

[62]  Peter W. Shor,et al.  Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.

[63]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[64]  Christopher Thraves,et al.  p-Box: A new graph model , 2015, Discret. Math. Theor. Comput. Sci..

[65]  Ilan Newman,et al.  On grid intersection graphs , 1991, Discret. Math..

[66]  Jan Kratochvíl,et al.  NP-hardness results for intersection graphs , 1989 .

[67]  William T. Trotter,et al.  The dimension of a comparability graph , 1976 .

[68]  Stefan Felsner Exploiting Air-Pressure to Map Floorplans on Point Sets , 2013, Graph Drawing.

[69]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[70]  Martin Pergel,et al.  Unit Grid Intersection Graphs: Recognition and Properties , 2013, ArXiv.

[71]  Jrgen Richter-Gebert,et al.  Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry , 2011 .

[72]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[73]  Jan Kratochvíl,et al.  The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree , 2009, Graph Drawing.

[74]  Steven Chaplick,et al.  Stabbing Polygonal Chains with Rays is Hard to Approximate , 2013, CCCG.

[75]  José A. Soto,et al.  Jump Number of Two-Directional Orthogonal Ray Graphs , 2011, IPCO.

[76]  Balázs Keszegh,et al.  Drawing Planar Graphs of Bounded Degree with Few Slopes , 2013, SIAM J. Discret. Math..

[77]  F. Leighton,et al.  Drawing graphs in the plane with high resolution , 1993 .

[78]  Marcus Schaefer,et al.  Realizability of Graphs and Linkages , 2013 .

[79]  Subir Kumar Ghosh On Recognizing and Characterizing Visibility Graphs of Simple Polygons , 1988, SWAT.

[80]  David R. Wood,et al.  On the Connectivity of Visibility Graphs , 2011, Discret. Comput. Geom..

[81]  Bodhayan Roy,et al.  Point Visibility Graph Recognition is NP-Hard , 2014, Int. J. Comput. Geom. Appl..

[82]  Stefan Felsner,et al.  The Complexity of the Partial Order Dimension Problem: Closing the Gap , 2015, SIAM J. Discret. Math..