Automata, Languages, and Programming

We consider the development of computational models for systems involving social networks and large human audiences. In particular, we focus on the spread of information and behavior through such systems, and the ways in which these processes are affected by the underlying network structure.

[1]  Jirí Sgall A Lower Bound for Randomized On-Line Multiprocessor Scheduling , 1997, Inf. Process. Lett..

[2]  Guochuan Zhang,et al.  A Simple Semi On-Line Algorithm for P2//C_{max} with a Buffer , 1997, Inf. Process. Lett..

[3]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[4]  Gerhard J. Woeginger,et al.  An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..

[5]  György Turán,et al.  On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..

[6]  Bala Kalyanasundaram,et al.  Speed is as powerful as clairvoyance , 2000, JACM.

[7]  Rajeev Motwani,et al.  The load rebalancing problem , 2006, J. Algorithms.

[8]  Leah Epstein,et al.  Bin stretching revisited , 2003, Acta Informatica.

[9]  Zsolt Tuza,et al.  New bounds and algorithms for on-line scheduling: two identical processors, known sum and upper bound on the tasks , 2006, Discret. Math. Theor. Comput. Sci..

[10]  T. C. Edwin Cheng,et al.  Semi-on-line multiprocessor scheduling with given total processing time , 2005, Theor. Comput. Sci..

[11]  Rudolf Fleischer,et al.  Online Scheduling Revisited , 2000, ESA.

[12]  Amit Kumar,et al.  Resource augmentation for weighted flow-time explained by dual fitting , 2012, SODA.

[13]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[14]  Zsolt Tuza,et al.  Semi-On-line Scheduling on Two Parallel Processors with an Upper Bound on the Items , 2003, Algorithmica.

[15]  Susanne Albers,et al.  On the Value of Job Migration in Online Makespan Minimization , 2012, ESA.

[16]  Martin Skutella,et al.  Online Scheduling with Bounded Migration , 2004, ICALP.

[17]  Susanne Albers,et al.  Better bounds for online scheduling , 1997, STOC '97.

[18]  Zsolt Tuza,et al.  Semi-online scheduling on two uniform processors , 2008, Theor. Comput. Sci..

[19]  Zsolt Tuza,et al.  The On-Line Multiprocessor Scheduling Problem with Known Sum of the Tasks , 2004, J. Sched..

[20]  Ramaswamy Chandrasekaran,et al.  Improved Bounds for the Online Scheduling Problem , 2003, SIAM J. Comput..

[21]  Zsolt Tuza,et al.  Semi on-line algorithms for the partition problem , 1997, Oper. Res. Lett..

[22]  Yossi Azar,et al.  On-line bin-stretching , 1998, Theor. Comput. Sci..

[23]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[24]  Gerhard J. Woeginger,et al.  An Optimal Algorithm for Preemptive On-line Scheduling , 1994, ESA.

[25]  Yuval Rabani,et al.  A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..

[26]  Gerhard J. Woeginger,et al.  A Lower Bound for Randomized On-Line Scheduling Algorithms , 1994, Information Processing Letters.

[27]  Eric Torng,et al.  Generating adversaries for request-answer games , 2000, SODA '00.

[28]  Leah Epstein,et al.  Preemptive Online Scheduling with Reordering , 2011, SIAM J. Discret. Math..

[29]  David R. Karger,et al.  A better algorithm for an ancient scheduling problem , 1994, SODA '94.

[30]  Kirk Pruhs,et al.  Online scheduling , 2003 .

[31]  Matthias Englert,et al.  The Power of Reordering for Online Minimum Makespan Scheduling , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Susanne Albers,et al.  Semi-online scheduling revisited , 2012, Theor. Comput. Sci..

[33]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.