Bayesian Methods for Joint Exoplanet Transit Detection and Systematic Noise Characterization

The treatment of systematic noise is a significant aspect of transit exoplanet data processing due to the signal strength of systematic noise relative to a transit signal. Typically the standard approach to transit detection is to estimate and remove systematic noise independently of and prior to a transit detection test. If a transit signal is present in a light curve, the process of systematic noise removal may distort the transit signal by overfitting and thereby reduce detection efficiency. We present a Bayesian framework for joint detection of transit signals and systematic noise characterization and describe the implementation of these detectors as optimal Neyman-Pearson likelihood ratio tests. The joint detectors reduce to closed form as matched filters under the assumption of a Gaussian Bayesian prior for the systematic noise. The performance of the exploratory detectors was evaluated in injection tests and show $\sim 2\%$ improvement in overall detection efficiency relative to the standard approach. We find that joint detection efficiency is specifically improved for short-period, low transit-depth exoplanet transits, providing evidence in support of the hypothesis that joint detection may indeed help to mitigate overfitting. In addition, an initial feasibility test to detect known exoplanets in Kepler data using the joint detectors produced encouraging preliminary results.

[1]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[2]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[3]  David M. Kipping,et al.  Parametrizing the exoplanet eccentricity distribution with the beta distribution. , 2013, 1306.4982.

[4]  Daniel Foreman-Mackey,et al.  A SYSTEMATIC SEARCH FOR TRANSITING PLANETS IN THE K2 DATA , 2015, 1502.04715.

[5]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[6]  Erik A. Petigura,et al.  Identification and Removal of Noise Modes in Kepler Photometry , 2012, 1208.4554.

[7]  Steven Reece,et al.  A Gaussian process framework for modelling stellar activity signals in radial velocity data , 2015, 1506.07304.

[8]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[9]  Howard Isaacson,et al.  MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM , 2010, 1008.4393.

[10]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[11]  Jon M. Jenkins,et al.  MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. II. DETECTION EFFICIENCY AS CALCULATED IN ONE YEAR OF DATA , 2015, 1507.05097.

[12]  M. R. Haas,et al.  OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE , 2010, 1001.0258.

[13]  Linear models for systematics and nuisances , 2017, 1710.11136.

[14]  Steven Kay Adaptive detection for unknown noise power spectral densities , 1999, IEEE Trans. Signal Process..

[15]  Jie Li,et al.  Transiting planet search in the Kepler pipeline , 2010, Astronomical Telescopes + Instrumentation.

[16]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[17]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[18]  K. Freeman,et al.  An Absence of Hot Jupiter Planets in 47 Tucanae: Results of a Wide-Field Transit Search , 2004, astro-ph/0411233.

[19]  J. G. Gander,et al.  An introduction to signal detection and estimation , 1990 .

[20]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[21]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[22]  S. Roberts,et al.  Astrophysically robust systematics removal using variational inference: application to the first month of Kepler data , 2013, 1308.3644.

[23]  J. Scargle Studies in astronomical time series analysis. I - Modeling random processes in the time domain , 1981 .

[24]  Hema Chandrasekaran,et al.  Presearch data conditioning in the Kepler Science Operations Center pipeline , 2010, Astronomical Telescopes + Instrumentation.

[25]  Jon M. Jenkins,et al.  The Impact of Solar-like Variability on the Detectability of Transiting Terrestrial Planets , 2002 .

[26]  B. Scott Gaudi,et al.  Fraction of Stars With Planets in the Open Cluster NGC 1245 , 2004 .

[27]  Jon M. Jenkins,et al.  MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. I. INDIVIDUAL EVENTS , 2013, 1303.0255.

[28]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[29]  Peter Tenenbaum,et al.  Identification of Background False Positives from Kepler Data , 2013, 1303.0052.

[30]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[31]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[32]  Benjamin D. Johnson,et al.  A Complete Census of Luminous Stellar Variability on Day to Decade Timescales , 2018, The Astrophysical Journal.

[33]  Nate B. Lust,et al.  ON CORRELATED-NOISE ANALYSES APPLIED TO EXOPLANET LIGHT CURVES , 2016, 1610.01336.

[34]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[35]  M. Still,et al.  Demystifying Kepler Data: A Primer for Systematic Artifact Mitigation , 2012, 1207.3093.

[36]  S. Barros,et al.  Gaussian process modelling of granulation and oscillations in red giant stars , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  L. Walkowicz,et al.  PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS. II. AN OVERVIEW OF AMPLITUDE, PERIODICITY, AND ROTATION IN FIRST QUARTER DATA , 2010, 1008.1092.

[38]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[39]  T. Loredo Promise of Bayesian Inference for Astrophysics , 1992 .

[40]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[41]  Joseph Catanzarite,et al.  Kepler Planet Detection Metrics: Per-Target Flux-Level Transit Injection Tests of TPS for Data Release 25 , 2017 .

[42]  R. W. Noyes,et al.  A trend filtering algorithm for wide-field variability surveys , 2004 .

[43]  B. Tingley A rigorous comparison of different planet detection algorithms , 2003 .

[44]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[45]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[46]  Amir Averbuch,et al.  FFT based image registration , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[47]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[48]  Martin C. Stumpe,et al.  Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data , 2014 .

[49]  William Gropp,et al.  The blue waters super-system for super-science , 2013 .

[50]  W. J. Borucki,et al.  Detectability of extrasolar planetary transits , 1985 .

[51]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[52]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[53]  Larry Wasserman,et al.  All of Statistics , 2004 .

[54]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[55]  Marc Ollivier,et al.  The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters , 2010, 1003.0427.

[56]  David Charbonneau,et al.  A Lack of Planets in 47 Tucanae from a Hubble Space Telescope Search , 2000 .

[57]  H. Deeg,et al.  Transit Photometry as an Exoplanet Discovery Method , 2018, 1803.07867.