Transparent electrodes based on two-dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics

Abstract. The optical and electrical properties of optically thin one-dimensional (1-D) Ag nanogratings and two-dimensional (2-D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics is explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2-D Ag nanogrids or two perpendicular 1-D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2-D Ag nanogrids and double (top and bottom) perpendicular 1-D Ag nanogratings, respectively.

[1]  Andrea Alù,et al.  Quenched optical transmission in ultrathin subwavelength plasmonic gratings , 2011 .

[2]  K. Sreenivas,et al.  Preparation and characterization of rf sputtered indium tin oxide films , 1985 .

[3]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[4]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[5]  Zakya H. Kafafi,et al.  Double plasmonic structure design for broadband absorption enhancement in molecular organic solar cells , 2011 .

[6]  Zakya H. Kafafi,et al.  Plasmonic electrodes for organic photovoltaics: polarization-independent absorption enhancement , 2014, Optics & Photonics - Photonic Devices + Applications.

[7]  Dieter Meissner,et al.  Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells , 2002 .

[8]  Wei Ding,et al.  Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. , 2013, Optics express.

[9]  Qiaoqiang Gan,et al.  Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[10]  Filbert J. Bartoli,et al.  Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters , 2014, CLEO 2014.

[11]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[12]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[13]  J. Nanos,et al.  Is indium tin oxide a suitable electrode in organic solar cells? Photovoltaic properties of interfaces in organic p∕n junction photodiodes , 2006 .

[14]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[15]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[16]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[17]  李轩华,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012 .

[18]  Zakya H. Kafafi,et al.  Polymeric photovoltaics with various metallic plasmonic nanostructures , 2013 .

[19]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[20]  Beibei Zeng,et al.  Rapid and highly-sensitive detection using Fano resonances in ultrathin plasmonic nanogratings , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[21]  Chun-Sing Lee,et al.  Transparent organic light-emitting devices with LiF/Yb:Ag cathode , 2007 .

[22]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[23]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[24]  Martin Dressel,et al.  How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. , 2009, Physical review letters.

[25]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[26]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[27]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[28]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[29]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[30]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[31]  R. Hatton,et al.  Ultrathin Transparent Au Electrodes for Organic Photovoltaics Fabricated Using a Mixed Mono‐Molecular Nucleation Layer , 2011 .

[32]  Hilmi Volkan Demir,et al.  Volumetric plasmonic resonator architecture for thin-film solar cells , 2011 .

[33]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[34]  Beibei Zeng,et al.  Super absorption of ultra-thin organic photovoltaic films , 2014 .

[35]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[36]  A. Ostfeld,et al.  Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics , 2011 .

[37]  Yi Cui,et al.  Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires , 2013, Nature Communications.

[38]  Shanhui Fan,et al.  Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. , 2010, Nano letters.