Design of metal nanoparticle synthesis by vapor flow condensation

Abstract A systematic engineering study on continuous synthesis of bismuth metal nanoparticles by vapor condensation in tube flows is presented. Simulations of aerosol nucleation, condensation and coagulation are cast in a design diagram format to guide experimental studies on the effect of process parameters on product nanoparticle characteristics. Flow visualization, tracer gas analysis and computational fluid dynamics are used to unravel the effect of particle residence time distribution on product morphology during evaluation of alternate quenching designs for the metal vapor. Bismuth nanoparticles of average diameter 12– 37 nm , as determined by nitrogen adsorption and X-ray diffraction, were made by controlling the quenching gas flow rate, carrier gas flow rate and process pressure.

[1]  R W Siegel,et al.  Cluster-Assembled Nanophase Materials , 1991 .

[2]  Homogeneous nucleation in metal vapors. 3. Temperature dependence of the critical supersaturation ratio for iron, lead, and bismuth , 1977 .

[3]  S. Pratsinis,et al.  Synthesis of nanostructured powders in an aerosol flow condenser , 1997 .

[4]  K. Dierksen,et al.  Mastertool: A New Dry Phototool in the Production of Printed Circuit Boards , 1996 .

[5]  R. Uyeda Studies of ultrafine particles in Japan: Crystallography. Methods of preparation and technological applications , 1991 .

[6]  R. Birringer,et al.  Synthesis of nanostructured materials by the use of a thermophoretic forced flux system , 1993 .

[7]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[8]  T. Haubold,et al.  Nanostructured Cu-Bi alloys prepared by co-evaporation in a continuous gas flow , 1996 .

[9]  L. Russell THE SINTERING OF PYROPHORIC POWDERS , 1967 .

[10]  Richard W. Siegel,et al.  Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report , 1989 .

[11]  S. Pratsinis,et al.  SIMULATION OF SYNTHESIS OF PALLADIUM NANOPARTICLES IN A JET AEROSOL FLOW CONDENSER , 1998 .

[12]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[13]  Robert C. Cammarata,et al.  Nanomaterials : synthesis, properties, and applications , 1996 .

[14]  T. Ohno,et al.  Formation of Ultrafine Metal Particles by Gas-Evaporation Technique. III. Al in He, Ar and Xe, and Mg in Mixtures of Inactive Gas and Air , 1976 .

[15]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[16]  A. Thölén On the formation and interaction of small metal particles , 1979 .

[17]  K. Sattler,et al.  Generation of Metal Clusters Containing from 2 to 500 Atoms , 1980 .

[18]  Donald T. Hawkins,et al.  Selected Values of the Thermodynamic Properties of the Elements , 1973 .

[19]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[20]  K. Yoshihara,et al.  A study of the passivating oxide layer on fine nickel particles , 1994 .

[21]  J. Seinfeld Atmospheric Chemistry and Physics of Air Pollution , 1986 .

[22]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[23]  P. H. Cittert,et al.  Die Herstellung von Wismut-Antimon-Vakuumthermoelementen durch Verdampfung , 1930 .

[24]  S. Pratsinis,et al.  Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor , 1995 .

[25]  S. Girshick,et al.  Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor , 1990 .

[26]  A. H. Pfund BISMUTH BLACK AND ITS APPLICATIONS , 1930 .

[27]  Larry J. Forney,et al.  Optimum jet mixing in a tubular reactor , 1996 .

[28]  A. Bejan Convection Heat Transfer , 1984 .

[29]  R. S. Dahlin,et al.  Aerosol formation in reacting gases: Theory and application to the anhydrous NH3-HCL system , 1981 .