Identity-Based Encryption from the Weil Pairing

We propose a fully functional identity-based encryption (IBE) scheme. The scheme has chosen ciphertext security in the random oracle model assuming a variant of the computational Diffie--Hellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic curves is an example of such a map. We give precise definitions for secure IBE schemes and give several applications for such systems.

[1]  Eric R. Verheul,et al.  Evidence that XTR Is More Secure than Supersingular Elliptic Curve Cryptosystems , 2001, Journal of Cryptology.

[2]  Daniel R. Simon,et al.  Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack , 1991, CRYPTO.

[3]  Moni Naor,et al.  Nonmalleable Cryptography , 2000, SIAM Rev..

[4]  Toshiya Itoh,et al.  An ID-based cryptosystem based on the discrete logarithm problem , 1989, IEEE J. Sel. Areas Commun..

[5]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[6]  Amos Fiat,et al.  Zero-knowledge proofs of identity , 1987, Journal of Cryptology.

[7]  Adi Shamir,et al.  Identity-Based Cryptosystems and Signature Schemes , 1984, CRYPTO.

[8]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[9]  Ueli Maurer,et al.  Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms , 1994, CRYPTO.

[10]  Silvio Micali,et al.  Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements , 2000, EUROCRYPT.

[11]  Yvo Desmedt,et al.  Public-Key Systems Based on the Difficulty of Tampering (Is There a Difference Between DES and RSA?) , 1986, CRYPTO.

[12]  Dan Boneh,et al.  The Decision Diffie-Hellman Problem , 1998, ANTS.

[13]  Antoine Joux,et al.  The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems , 2002, ANTS.

[14]  Ronald Cramer,et al.  A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack , 1998, CRYPTO.

[15]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[16]  Birgit Pfitzmann,et al.  Self-Delegation with Controlled Propagation - or - What If You Lose Your Laptop , 1998, CRYPTO.

[17]  Moni Naor,et al.  Non-malleable cryptography , 1991, STOC '91.

[18]  Mihir Bellare,et al.  Relations among Notions of Security for Public-Key Encryption Schemes , 1998, IACR Cryptol. ePrint Arch..

[19]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[20]  Jean-Sébastien Coron,et al.  On the Exact Security of Full Domain Hash , 2000, CRYPTO.

[21]  Antoine Joux,et al.  A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.

[22]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[23]  Clifford C. Cocks An Identity Based Encryption Scheme Based on Quadratic Residues , 2001, IMACC.

[24]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[25]  Mihir Bellare Advances in Cryptology — CRYPTO 2000 , 2000, Lecture Notes in Computer Science.

[26]  G. Seroussi,et al.  Arithmetic on an Elliptic Curve , 1999 .

[27]  Detlef Hühnlein,et al.  Towards Practical Non-interactive Public Key Cryptosystems Using Non-maximal Imaginary Quadratic Orders , 2000, Selected Areas in Cryptography.

[28]  Steven D. Galbraith,et al.  Implementing the Tate Pairing , 2002, ANTS.

[29]  JooSeok Song,et al.  Information Security and Cryptology - ICISC’99 , 1999, Lecture Notes in Computer Science.

[30]  Antoine Joux,et al.  Separating Decision Diffie–Hellman from Computational Diffie–Hellman in Cryptographic Groups , 2003, Journal of Cryptology.

[31]  Rafail Ostrovsky,et al.  Conditional Oblivious Transfer and Timed-Release Encryption , 1999, EUROCRYPT.

[32]  Ronald L. Rivest,et al.  Time-lock Puzzles and Timed-release Crypto , 1996 .

[33]  Antoine Joux,et al.  Separating Decision Diffie-Hellman from Diffie-Hellman in cryptographic groups , 2001, IACR Cryptology ePrint Archive.

[34]  Ueli Maurer,et al.  Non-interactive Public-Key Cryptography , 1991, EUROCRYPT.

[35]  Steven D. Galbraith,et al.  Supersingular Curves in Cryptography , 2001, ASIACRYPT.

[36]  Gerhard Frey,et al.  The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems , 1999, IEEE Trans. Inf. Theory.

[37]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[38]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.

[39]  Moti Yung,et al.  Self-Escrowed Public-Key Infrastructures , 1999, ICISC.

[40]  Hatsukazu Tanaka A Realization Scheme for the Identity-Based Cryptosystem , 1987, CRYPTO.

[41]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[42]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[43]  Hugo Krawczyk,et al.  Robust and Efficient Sharing of RSA Functions , 2000, Journal of Cryptology.

[44]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .