Computing the Ehrhart quasi-polynomial of a rational simplex

We present a polynomial time algorithm to compute any fixed number of the highest coefficients of the Ehrhart quasi-polynomial of a rational simplex. Previously such algorithms were known for integer simplices and for rational polytopes of a fixed dimension. The algorithm is based on the formula relating the kth coefficient of the Ehrhart quasi-polynomial of a rational polytope to volumes of sections of the polytope by affine lattice subspaces parallel to k-dimensional faces of the polytope. We discuss possible extensions and open questions.

[1]  Peter McMullen,et al.  Valuations on convex bodies , 1983 .

[2]  Sinai Robins,et al.  Erratum: The Ehrhart polynomial of a lattice polytope , 1997 .

[3]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[4]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[5]  Richard Bellman,et al.  A Brief Introduction to Theta Functions , 1960 .

[6]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[7]  Alexander I. Barvinok,et al.  Computing the volume, counting integral points, and exponential sums , 1992, SCG '92.

[8]  Frank Sottile,et al.  Irrational proofs for three theorems of Stanley , 2007, Eur. J. Comb..

[9]  Peter McMullen,et al.  Lattice invariant valuations on rational polytopes , 1978 .

[10]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[11]  Hugh Thomas,et al.  Cycles representing the Todd class of a toric variety , 2003 .

[12]  Imre Brny LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) By JI MATOUEK: 481 pp., 31.50 (US$39.95), ISBN 0-387-95374-4 (Springer, New York, 2002). , 2003 .

[13]  P. McMullen Valuations and Dissections , 1993 .

[14]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[15]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[16]  Valery Shevchenko Qualitative Topics in Integer Linear Programming , 1996 .

[17]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[18]  Jesús A. De Loera,et al.  Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..

[19]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[20]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[21]  A. I. Barvinok,et al.  Computing the Ehrhart polynomial of a convex lattice polytope , 1994, Discret. Comput. Geom..

[22]  Vincent Loechner,et al.  Analytical computation of Ehrhart polynomials: enabling more compiler analyses and optimizations , 2004, CASES '04.

[23]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[24]  Sinai Robins,et al.  The Ehrhart polynomial of a lattice polytope , 1997 .

[25]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[26]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.

[27]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[28]  R. Morelli,et al.  Pick's theorem and the Todd class of a toric variety , 1993 .