From Dendrites to Networks: Optically Probing the Living Brain Slice and Using Principal Component Analysis to Characterize Neuronal Morphology

Recently, advances in optical imaging of the living brain slice preparation have permitted neuronal circuitry to be examined at multiple levels, ranging from individual synaptic contacts on dendrites to whole populations of neurons in a network. In this chapter, we describe three techniques that, together, enable a powerful dissection of neuronal circuits across multiple space scales. We describe methods for (1) combining whole-cell recording with two-photon calcium imaging and electron microscopic reconstruction to examine the functions of individual synapses and dendrites during synaptic stimulation, (2) imaging hundreds of neurons in the brain slice simultaneously to examine the spatiotemporal dynamics of activity in living neuronal networks, and (3) performing an unbiased, quantitative analysis of neuronal morphology that is increasingly necessary in light of the multiparametric structural diversity of distinct neuronal subclasses.

[1]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[2]  Fritjof Helmchen,et al.  Raising the speed limit – fast Ca2+ handling in dendritic spines , 2002, Trends in Neurosciences.

[3]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[4]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[5]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[6]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[7]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[8]  P. Kostyuk,et al.  Changes in calcium signalling in dorsal horn neurons in rats with streptozotocin-induced diabetes , 1999, Neuroscience.

[9]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[10]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[11]  L. Mao,et al.  Group I metabotropic glutamate receptor‐mediated calcium signalling and immediate early gene expression in cultured rat striatal neurons , 2003, The European journal of neuroscience.

[12]  T. Teyler,et al.  Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice , 1976, Brain Research.

[13]  H. Kaiser The Application of Electronic Computers to Factor Analysis , 1960 .

[14]  K. Holthoff,et al.  A problem with Hebb and local spikes , 2002, Trends in Neurosciences.

[15]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[16]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[17]  B. Connors,et al.  Mechanisms of epileptogenesis in cortical structures , 1984, Annals of neurology.

[18]  H. Higashi,et al.  Extrusion of intracellular calcium ion after in vitro ischemia in the rat hippocampal CA1 region. , 2002, Journal of neurophysiology.

[19]  A. Konnerth,et al.  Two-photon Na+ imaging in spines and fine dendrites of central neurons , 1999, Pflügers Archiv.

[20]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[21]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Ia‐type K+ channels control action potential backpropagation , 2003, The Journal of physiology.

[22]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[23]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[24]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[25]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[26]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[27]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[28]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[29]  Peter Somogyi,et al.  Erratum: Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites (Nature (1994) 368 (823- 828)) , 1997 .

[30]  I. Jolliffe Principal Component Analysis , 2002 .

[31]  R. Dingledine,et al.  The in vitro brain slice as a useful neurophysiological preparation for intracellular recording , 1980, Journal of Neuroscience Methods.

[32]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[33]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[34]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[35]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[36]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[37]  A Konnerth,et al.  NMDA Receptor-Mediated Na+ Signals in Spines and Dendrites , 2001, The Journal of Neuroscience.

[38]  K. Holthoff,et al.  Single‐shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex , 2004, The Journal of physiology.

[39]  Yuji Ikegaya,et al.  Calcium imaging of cortical networks dynamics. , 2005, Cell calcium.

[40]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[42]  Rafael Yuste,et al.  A custom-made two-photon microscope and deconvolution system , 2000, Pflügers Archiv.

[43]  S. Ghozland,et al.  Spontaneous network activity of cerebellar granule neurons: impairment by in vivo chronic cannabinoid administration , 2002, The European journal of neuroscience.

[44]  Rafael Yuste,et al.  A two-photon and second-harmonic microscope. , 2003, Methods.

[45]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[46]  G Major,et al.  Fast voltage-sensitive dye recording of membrane potential changes at multiple sites on an individual nerve cell in the rat cortical slice. , 1997, The Biological bulletin.

[47]  F. Helmchen Dendrites as biochemical compartments , 1999 .

[48]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[49]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[50]  Ian T. Jolliffe,et al.  Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .

[51]  J. Sarvey,et al.  Long-term potentiation: studies in the hippocampal slice , 1989, Journal of Neuroscience Methods.

[52]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[53]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[54]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[55]  R. Tsien A non-disruptive technique for loading calcium buffers and indicators into cells , 1981, Nature.

[56]  D. Kleinfeld,et al.  Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. , 1997, Cerebral cortex.

[57]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[58]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[59]  Rafael Yuste,et al.  Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons , 2005, Trends in Neurosciences.

[60]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[61]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[62]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.