Resource ephemerality influences effectiveness of altruistic behavior in collective foraging

[1]  P. Simoens,et al.  Modeling the Influence of Social Feedback on Altruism using Multi-Agent Systems , 2020, ALIFE.

[2]  I. Couzin,et al.  Individual vocal recognition across taxa: a review of the literature and a look into the future , 2020, Philosophical Transactions of the Royal Society B.

[3]  Pieter Simoens,et al.  Hybrid foraging in patchy environments using spatial memory , 2020, Journal of the Royal Society Interface.

[4]  Pieter Simoens,et al.  Adaptive Foraging in Dynamic Environments Using Scale-Free Interaction Networks , 2020, Frontiers in Robotics and AI.

[5]  T. Czaczkes,et al.  Negative feedback: ants choose unoccupied over occupied food sources and lay more pheromone to them , 2020, Journal of the Royal Society Interface.

[6]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[7]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[8]  Pieter Simoens,et al.  Scale-Free Features in Collective Robot Foraging , 2019, Applied Sciences.

[9]  Andrea Falcón-Cortés,et al.  Collective learning from individual experiences and information transfer during group foraging , 2019, Journal of the Royal Society Interface.

[10]  Yossi Yovel,et al.  Resource Ephemerality Drives Social Foraging in Bats , 2018, Current Biology.

[11]  Pieter Simoens,et al.  The Impact of Interaction Models on the Coherence of Collective Decision-Making: A Case Study with Simulated Locusts , 2018, ANTS Conference.

[12]  Ahmed El Hady,et al.  Foraging as an evidence accumulation process , 2018, bioRxiv.

[13]  Linus J Schumacher,et al.  Shared behavioral mechanisms underlie C. elegans aggregation and swarming , 2018, bioRxiv.

[14]  Roland Bouffanais,et al.  Optimal network topology for responsive collective behavior , 2018, Science Advances.

[15]  F. W. Wolf,et al.  Satiation state-dependent dopaminergic control of foraging in Drosophila , 2018, Scientific Reports.

[16]  James A. R. Marshall,et al.  Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms , 2018, DARS.

[17]  Heiko Hamann,et al.  Swarm Robotics - A Formal Approach , 2018 .

[18]  Eliseo Ferrante,et al.  Scale invariance in natural and artificial collective systems: a review , 2017, Journal of The Royal Society Interface.

[19]  Roland Bouffanais,et al.  Effect of Correlations in Swarms on Collective Response , 2017, Scientific Reports.

[20]  Michael A Charleston,et al.  Collective foraging in spatially complex nutritional environments , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  J. Herberholz,et al.  Satiation level affects anti-predatory decisions in foraging juvenile crayfish , 2017, Journal of Comparative Physiology A.

[22]  Frederic Bartumeus,et al.  Foraging success under uncertainty: search tradeoffs and optimal space use. , 2016, Ecology letters.

[23]  Giuseppe Oriolo,et al.  Random Walks in Swarm Robotics: An Experiment with Kilobots , 2016, ANTS Conference.

[24]  B. Lapointe,et al.  Effects of tidal periodicities and diurnal foraging constraints on the density of foraging wading birds , 2016, The Auk.

[25]  M. E. Wosniack,et al.  Efficient search of multiple types of targets. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  C. Grüter,et al.  Why, when and where did honey bee dance communication evolve? , 2015, Front. Ecol. Evol..

[27]  Gil Ariel,et al.  Swarming bacteria migrate by Lévy Walk , 2015, Nature Communications.

[28]  P. McLoughlin,et al.  Density-dependent, central-place foraging in a grazing herbivore: competition and tradeoffs in time allocation near water , 2015 .

[29]  Jacob Beal,et al.  Superdiffusive Dispersion and Mixing of Swarms , 2015, ACM Trans. Auton. Adapt. Syst..

[30]  G M Viswanathan,et al.  Robustness of optimal random searches in fragmented environments. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Marco Dorigo,et al.  Efficient Decision-Making in a Self-Organizing Robot Swarm: On the Speed Versus Accuracy Trade-Off , 2015, AAMAS.

[32]  Arjan Boonman,et al.  Bats Aggregate to Improve Prey Search but Might Be Impaired when Their Density Becomes Too High , 2015, Current Biology.

[33]  G. Pyke Understanding movements of organisms: it's time to abandon the Lévy foraging hypothesis , 2015 .

[34]  A. Cavagna,et al.  Finite-size scaling as a way to probe near-criticality in natural swarms. , 2014, Physical review letters.

[35]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[36]  Hazel R. Parry,et al.  Optimal Lévy-flight foraging in a finite landscape , 2014, Journal of The Royal Society Interface.

[37]  Tom Stafford,et al.  When natural selection should optimize speed-accuracy trade-offs , 2014, Front. Neurosci..

[38]  Akinori Takahashi,et al.  Testing optimal foraging theory in a penguin–krill system , 2014, Proceedings of the Royal Society B: Biological Sciences.

[39]  Steven D. Prager,et al.  The dynamics of animal social networks: analytical, conceptual, and theoretical advances , 2014 .

[40]  Daniel Campos,et al.  Reorientation patterns in central-place foraging: internal clocks and klinokinesis , 2014, Journal of The Royal Society Interface.

[41]  Tamás Vicsek,et al.  Collective foraging in heterogeneous landscapes , 2013, Journal of The Royal Society Interface.

[42]  L. Gerardo Herrera M.,et al.  Marine and terrestrial food sources in the diet of the fish-eating myotis (Myotis vivesi) , 2013 .

[43]  Paul Levi,et al.  Collective-adaptive Lévy flight for underwater multi-robot exploration , 2013, 2013 IEEE International Conference on Mechatronics and Automation.

[44]  R. R. Krausz Living in Groups , 2013 .

[45]  Takao Sasaki,et al.  Linear recruitment leads to allocation and flexibility in collective foraging by ants , 2013, Animal Behaviour.

[46]  Martin C. Stumpe,et al.  Harvester ants use interactions to regulate forager activation and availability , 2013, Animal Behaviour.

[47]  Guy Cowlishaw,et al.  How do foragers decide when to leave a patch? A test of alternative models under natural and experimental conditions. , 2013, The Journal of animal ecology.

[48]  I. Couzin,et al.  Emergent Sensing of Complex Environments by Mobile Animal Groups , 2013, Science.

[49]  Cristóbal López,et al.  Optimizing the search for resources by sharing information: Mongolian gazelles as a case study. , 2013, Physical review letters.

[50]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[51]  Ralf Metzler,et al.  Area coverage of radial Lévy flights with periodic boundary conditions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Ernesto P. Raposo,et al.  The influence of the environment on Lévy random search efficiency: Fractality and memory effects , 2012 .

[53]  Radhika Nagpal,et al.  Kilobot: A low cost scalable robot system for collective behaviors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[54]  A. M. Edwards,et al.  Assessing Lévy walks as models of animal foraging , 2011, Journal of The Royal Society Interface.

[55]  Eshel Ben-Jacob,et al.  Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions , 2011, PLoS Comput. Biol..

[56]  R. Rojas,et al.  Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot , 2011, PloS one.

[57]  H. Stanley,et al.  The Physics of Foraging: An Introduction to Random Searches and Biological Encounters , 2011 .

[58]  Kimberly A. With,et al.  Habitat area trumps fragmentation effects on arthropods in an experimental landscape system , 2011, Landscape Ecology.

[59]  A. M. Edwards,et al.  Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. , 2011, Ecology.

[60]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[61]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[62]  J. Boomsma,et al.  Forage collection, substrate preparation, and diet composition in fungus‐growing ants , 2010 .

[63]  P. Heagerty,et al.  Spatial associations between large baleen whales and their prey in West Greenland , 2010 .

[64]  Colin Torney,et al.  Context-dependent interaction leads to emergent search behavior in social aggregates , 2009, Proceedings of the National Academy of Sciences.

[65]  Xavier Pérez-Giménez,et al.  Large Connectivity for Dynamic Random Geometric Graphs , 2009, IEEE Transactions on Mobile Computing.

[66]  Denis Boyer,et al.  Association networks in spider monkeys (Ateles geoffroyi) , 2009, Behavioral Ecology and Sociobiology.

[67]  X. Cerdá,et al.  Individual and collective foraging decisions: a field study of worker recruitment in the gypsy ant Aphaenogaster senilis , 2009, Behavioral Ecology and Sociobiology.

[68]  T. Fuller,et al.  A mega-herd of more than 200,000 Mongolian gazelles Procapra gutturosa: a consequence of habitat quality , 2009, Oryx.

[69]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[70]  S. Levin,et al.  Superdiffusion and encounter rates in diluted, low dimensional worlds , 2008 .

[71]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[72]  M. Rietkerk,et al.  Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems , 2007, Nature.

[73]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[74]  R. Menzel,et al.  Displaced honey bees perform optimal scale-free search flights. , 2007, Ecology.

[75]  S. Benhamou HOW MANY ANIMALS REALLY DO THE LÉVY WALK , 2007 .

[76]  M A Lewis,et al.  Complex spatial group patterns result from different animal communication mechanisms , 2007, Proceedings of the National Academy of Sciences.

[77]  Miles L. Logsdon,et al.  Springtime coupling between chlorophyll a, sea ice and sea surface temperature in Disko Bay, West Greenland , 2007 .

[78]  Daniel I Bolnick,et al.  Intraspecific competition drives increased resource use diversity within a natural population , 2007, Proceedings of the Royal Society B: Biological Sciences.

[79]  Henri Weimerskirch,et al.  Are seabirds foraging for unpredictable resources , 2007 .

[80]  Thomas J. Valone,et al.  Are animals capable of Bayesian updating? An empirical review , 2006 .

[81]  Germinal Cocho,et al.  Scale-free foraging by primates emerges from their interaction with a complex environment , 2006, Proceedings of the Royal Society B: Biological Sciences.

[82]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[83]  Guy Beauchamp,et al.  Does group foraging promote efficient exploitation of resources , 2005 .

[84]  Gabriel Ramos-Fernández,et al.  Vocal Communication in a Fission-Fusion Society: Do Spider Monkeys Stay in Touch With Close Associates? , 2005, International Journal of Primatology.

[85]  G. Ruxton,et al.  An evolutionarily stable joining policy for group foragers , 2005 .

[86]  E. J. Collins,et al.  The hidden cost of information in collective foraging , 2005, Proceedings of the Royal Society B: Biological Sciences.

[87]  Chen Avin,et al.  On the Cover Time of Random Geometric Graphs , 2005, ICALP.

[88]  R. Menzel,et al.  The flight paths of honeybees recruited by the waggle dance , 2005, Nature.

[89]  J. Deneubourg,et al.  Self-organized aggregation in cockroaches , 2005, Animal Behaviour.

[90]  Mark S. Boyce,et al.  Quantifying patch distribution at multiple spatial scales: applications to wildlife-habitat models , 2004, Landscape Ecology.

[91]  H. Possingham,et al.  Habitat Selection and Population Regulation in Temporally Fluctuating Environments , 2004, The American Naturalist.

[92]  E. Bangs,et al.  Wolves: Behavior, Ecology, and Conservation , 2004 .

[93]  Guy Beauchamp,et al.  Reduced flocking by birds on islands with relaxed predation , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[94]  A. Dornhaus,et al.  Why do honey bees dance? , 2004, Behavioral Ecology and Sociobiology.

[95]  Marcos C. Santos,et al.  Dynamical robustness of Lévy search strategies. , 2003, Physical review letters.

[96]  Anna Dornhaus,et al.  Speed versus accuracy in collective decision making , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  David Sloan Wilson,et al.  Living in Groups.Oxford Series in Ecology and Evolution.ByJens Krauseand, Graeme D Ruxton.Oxford and New York: Oxford University Press. $95.00 (hardcover); $45.00 (paper). xiv + 210 p; ill.; author and general indexes. ISBN: 0–19–850817–4 (hc); 0–19–850818–2 (pb). 2002. , 2003 .

[98]  R. Frey,et al.  The highly specialized vocal tract of the male Mongolian gazelle (Procapra gutturosa Pallas, 1777 – Mammalia, Bovidae) , 2003, Journal of anatomy.

[99]  Richard H. Rand,et al.  Tree size frequency distributions, plant density, age and community disturbance , 2003 .

[100]  D. Reby,et al.  Long-distance communication of acoustic cues to social identity in African elephants , 2003, Animal Behaviour.

[101]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[102]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Karl J. Niklas,et al.  Invariant scaling relations across tree-dominated communities , 2001, Nature.

[104]  Odile Pons,et al.  Patch leaving decision rules and the Marginal Value Theorem: an experimental analysis and a simulation model. , 2000 .

[105]  Simon A. Levin,et al.  Multiple Scales and the Maintenance of Biodiversity , 2000, Ecosystems.

[106]  H. Nakao Multi-scaling properties of truncated Lévy flights , 2000, cond-mat/0002027.

[107]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[108]  Kevin S. McKelvey,et al.  Estimation of habitat selection for central-place foraging animals. , 1999 .

[109]  P. Fauchald,et al.  Foraging in a Hierarchical Patch System , 1999, The American Naturalist.

[110]  L. Giraldeau,et al.  Food exploitation: searching for the optimal joining policy. , 1999, Trends in ecology & evolution.

[111]  Hannu Rita,et al.  Competition in a Group of Equal Foragers , 1998, The American Naturalist.

[112]  R. Bonser,et al.  Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis , 1998 .

[113]  G. Beauchamp,et al.  Group Foraging Revisited: Information Sharing or Producer-Scrounger Game? , 1996, The American Naturalist.

[114]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[115]  G. Ruxton,et al.  Attraction Toward Feeding Conspecifics when Food Patches are Exhaustible , 1995, The American Naturalist.

[116]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[117]  R. Morse The Dance Language and Orientation of Bees , 1994 .

[118]  E. Ranta,et al.  Competition Versus Cooperation: Success of Individuals Foraging Alone and in Groups , 1993, The American Naturalist.

[119]  D. Gordon,et al.  What is the function of encounter patterns in ant colonies? , 1993, Animal Behaviour.

[120]  C. Ryer,et al.  Social enhancement of foraging on an ephemeral food source in juvenile walleye pollock, Theragra chalcogramma , 1991, Environmental Biology of Fishes.

[121]  P. Haccou,et al.  INFORMATION PROCESSING BY FORAGERS: EFFECTS OF INTRA-PATCH EXPERIENCE ON THE LEAVING TENDENCY OF LEPTOPILINA HETEROTOMA , 1991 .

[122]  Charles R. Brown,et al.  Social foraging in cliff swallows: local enhancement, risk sensitivity, competition and the avoidance of predators , 1988, Animal Behaviour.

[123]  C. Clark,et al.  The evolutionary advantages of group foraging , 1986 .

[124]  N. Metcalfe,et al.  Group foraging in wild brown hares: effects of resource distribution and social status , 1985, Animal Behaviour.

[125]  C. Clark,et al.  Foraging and Flocking Strategies: Information in an Uncertain Environment , 1984, The American Naturalist.

[126]  T. Pitcher,et al.  Fish in larger shoals find food faster , 1982, Behavioral Ecology and Sociobiology.

[127]  J. McNamara Optimal patch use in a stochastic environment , 1982 .

[128]  James N. McNair,et al.  Optimal Giving-Up Times and the Marginal Value Theorem , 1982, The American Naturalist.

[129]  B. Shorrocks,et al.  Competition on a Divided and Ephemeral Resource: A Simulation Model , 1981 .

[130]  M. Andersson Central Place Foraging in the Whinchat, Saxicola Rubetra , 1981 .

[131]  R. Sibly,et al.  Producers and scroungers: A general model and its application to captive flocks of house sparrows , 1981, Animal Behaviour.

[132]  M. Rosenzweig,et al.  A Theory of Habitat Selection , 1981 .

[133]  R. Beaver NON-EQUILIBRIUM 'ISLAND' COMMUNITIES. A GUILD OF TROPICAL BARK BEETLES , 1979 .

[134]  R. Beaver NON-EQUILIBRIUM 'ISLAND' COMMUNITIES: DIPTERA BREEDING IN DEAD SNAILS , 1977 .

[135]  S. Levin Population Dynamic Models in Heterogeneous Environments , 1976 .

[136]  W. Hamilton Geometry for the selfish herd. , 1971, Journal of theoretical biology.

[137]  S. Fretwell,et al.  On territorial behavior and other factors influencing habitat distribution in birds , 1969 .

[138]  Pieter Simoens,et al.  Collective Decision-Making on Triadic Graphs , 2020 .

[139]  Pieter Simoens,et al.  Enhanced Foraging in Robot Swarms Using Collective Lévy Walks , 2020, ECAI.

[140]  Y. Yom-Tov,et al.  Changes in diet, body mass and fatty acid composition during pre-hibernation in a subtropical bat in relation to NPY and AgRP expression , 2012, Journal of Comparative Physiology B.

[141]  Alan F. T. Winfield,et al.  Foraging Robots , 2009, Encyclopedia of Complexity and Systems Science.

[142]  J. Deneubourg,et al.  Collective Decision-Making and Foraging Patterns in Ants and Honeybees , 2008 .

[143]  Jens Krause,et al.  The confusion effect—from neural networks to reduced predation risk , 2008 .

[144]  P. Visscher Group decision making in nest-site selection among social insects. , 2007, Annual review of entomology.

[145]  G. Beauchamp Effect of Group Size on Feeding Rate when Patches are Exhaustible , 2007 .

[146]  P. Nonacs State dependent behavior and the Marginal Value Theorem , 2001 .

[147]  Jean-Louis Deneubourg,et al.  Decision-making in foraging by social insects , 1999 .

[148]  Bruce Winterhalder,et al.  Social foraging and the behavioral ecology of intragroup resource transfers , 1996 .

[149]  Kurt M. Fristrup,et al.  Geometry of visual recruitment by seabirds to ephemeral foraging flocks , 1992 .

[150]  J. Piatt,et al.  Threshold foraging behavior of baleen whales , 1992 .

[151]  H. Ronald Pulliam,et al.  Chapter 3 – SOCIAL ORGANIZATION IN THE NONREPRODUCTIVE SEASON , 1982 .