Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs

Abstract A consolidating product based on nanoparticles of slaked lime (Ca(OH)2) dispersed in isopropyl alcohol was exposed under different relative humidities (RH), 33%, 54%, 75% and 90% during 7, 14, 21 and 28 days. The characterization of the calcium hydroxide nanoparticles and the formed calcium carbonate polymorphs have been performed by Micro Raman spectroscopy, Transmission Electron Microscopy (TEM), Environmental Scanning Electron Microscopy (ESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). Precipitation and transformation of calcium carbonate polymorphs strongly depend on the relative humidity (RH). Higher RH (75%–90% RH) gives rise to amorphous calcium carbonate and monohydrocalcite, calcite, aragonite and vaterite, faster carbonation and larger particles sizes with higher crystallinity compared to lower RH (33%–54% RH) that gives rise mainly to portlandite and vaterite, slower carbonation and smaller particle sizes with lower crystallinity.

[1]  M. Pons,et al.  Morphological development in calcium carbonate precipitation by the ethanolamine process , 1999 .

[2]  Lan Xiang,et al.  Controllable synthesis of calcium carbonate polymorphs at different temperatures , 2009 .

[3]  T. Shahwan,et al.  Morphosynthesis of CaCO3 at different reaction temperatures and the effects of PDDA, CTAB, and EDTA on the particle morphology and polymorph stability , 2007 .

[4]  C. Rodriguez-Navarro,et al.  Bacterially mediated mineralization of vaterite , 2007 .

[5]  Kerstin Elert,et al.  Lime Mortars for the Conservation of Historic Buildings , 2002 .

[6]  Gc Allen,et al.  The Influence of Relative Humidity on Structural and Chemical Changes During Carbonation of Hydraulic Lime , 2007 .

[7]  G. E. Henderson,et al.  Controlling the kinetic versus thermodynamic crystallisation of calcium carbonate , 2002 .

[8]  J. Garcia-Guinea,et al.  Cinética de carbonatación de morteros experimentales de cal de tipo romano , 2004 .

[9]  Cédric Carteret,et al.  Raman spectroscopy - a powerful tool for the quantitative determination of the composition of polymorph mixtures : Application to CaCO3 polymorph mixtures , 2006 .

[10]  J. Baltrusaitis,et al.  Calcite (101¯4) surface in humid environments , 2009 .

[11]  L. Brečević,et al.  Solubility of amorphous calcium carbonate , 1989 .

[12]  Wang,et al.  Preparation of Uniform Needle-Like Aragonite Particles by Homogeneous Precipitation. , 1999, Journal of colloid and interface science.

[13]  N. Vagenas,et al.  A methodology for quantitative determination of minor components in minerals based on FT-Raman spectroscopy: The case of calcite in dolomitic marble , 2003 .

[14]  Sanja Potgieter-Vermaak,et al.  The application of raman spectrometry to investigate and characterize cement. Part I: A review , 2006 .

[15]  M. Seiersten,et al.  Polymorphism and morphology of calcium carbonate precipitated in mixed solvents of ethylene glycol and water , 2009 .

[16]  Barbara Salvadori,et al.  Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay , 2006 .

[17]  Kris A. Berglund,et al.  In Situ Monitoring of Calcium Carbonate Polymorphs during Batch Crystallization in the Presence of Polymeric Additives Using Raman Spectroscopy , 2003 .

[18]  C. Gabrielli,et al.  Characterization of CaCO3 hydrates by micro‐Raman spectroscopy , 2002 .

[19]  John Ashurst,et al.  Conservation of building and decorative stone , 1991 .

[20]  J. Clarkson,et al.  Role of metastable phases in the spontaneous precipitation of calcium carbonate , 1992 .

[21]  R. Gauldie Polymorphic crystalline structure of fish otoliths , 1993, Journal of morphology.

[22]  Patrick Dangla,et al.  Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics , 2007 .

[23]  Sílvia Oliveira Sequeira,et al.  Deacidification of paper using dispersions of Ca(OH)2 nanoparticles in isopropanol. Study of efficiency , 2006 .

[24]  P. Koutsoukos,et al.  The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase , 1998 .

[25]  Jiaguo Yu,et al.  Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction , 2004 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  T. Tin,et al.  Geophysical Research Abstracts , 2007 .

[28]  E. Hansen,et al.  Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[29]  Jianhua Huang,et al.  The crystallization behavior of calcium carbonate in ethanol/water solution containing mixed nonionic/anionic surfactants , 2009 .

[30]  E. Dalas,et al.  Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol , 2000 .

[31]  Michèle Queneudec,et al.  Influence of storage conditions on the carbonation of powdered Ca(OH)2 , 2002 .

[32]  S. Ludsin,et al.  Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths , 2005 .

[33]  Rafael Fort,et al.  Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques , 2010 .

[34]  W. Hofmeister,et al.  Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls , 2008, Mineralogical Magazine.

[35]  V. Juvekar,et al.  Absorption of CO2 in a suspension of lime , 1973 .

[36]  C. Gabrielli,et al.  In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite , 2000 .

[37]  Yong Soo Kang,et al.  Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants , 2009 .

[38]  E. Chibowski,et al.  Influence of ionic surfactants on the properties of freshly precipitated calcium carbonate , 2007 .

[39]  C. Y. Tai,et al.  Polymorphism of CaCO3, precipitated in a constant‐composition environment , 1998 .

[40]  S. Gunasekaran,et al.  Raman and infrared spectra of carbonates of calcite structure , 2006 .

[41]  Takeshi Ogino,et al.  The formation and transformation mechanism of calcium carbonate in water , 1987 .

[42]  S. Weiner,et al.  Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule , 2008, Proceedings of the National Academy of Sciences.

[43]  G. Falini,et al.  Influence on the Formation of Aragonite or Vaterite by Otolith Macromolecules , 2005 .

[44]  Sagrario Martínez-Ramírez,et al.  MICRO-RAMAN SPECTROSCOPY APPLIED TO DEPTH PROFILES OF CARBONATES FORMED IN LIME MORTAR , 2003 .

[45]  Giuliana Taglieri,et al.  Nanolime suspensions applied on natural lithotypes: The influence of concentration and residual water content on carbonatation process and on treatment effectiveness , 2010 .

[46]  T. Ogino,et al.  The rate and mechanism of polymorphic transformation of calcium carbonate in water , 1990 .

[47]  C. Hall,et al.  Characterization of Cement Minerals, Cements and Their Reaction Products at the Atomic and Nano Scale , 2008 .

[48]  N. Vagenas,et al.  Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy , 2000 .

[49]  R. Clemente,et al.  Rhombohedral-scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)2-CO2-H2O. , 2003 .