First-principles predictions of electronic properties of GaAs1-x-yPyBix and GaAs1-x-yPyBix-based heterojunctions

Significant efficiency droop is a major concern for light-emitting diodes and laser diodes operating at high current density. Recent study has suggested that heavily Bi-alloyed GaAs can decrease the non-radiative Auger recombination and therefore alleviate the efficiency droop. Using density functional theory, we studied a newly fabricated quaternary alloy, GaAs1-x-yPyBix, which can host significant amounts of Bi, through calculations of its band gap, spin-orbit splitting, and band offsets with GaAs. We found that the band gap changes of GaAs1-x-yPyBix relative to GaAs are determined mainly by the local structural changes around P and Bi atoms rather than their electronic structure differences. To obtain alloy with lower Auger recombination than GaAs bulk, we identified the necessary constraints on the compositions of P and Bi. Finally, we demonstrated that GaAs/GaAs1-x-yPyBix heterojunctions with potentially low Auger recombination can exhibit small lattice mismatch and large enough band offsets for stro...

[1]  Joachim Piprek,et al.  How to decide between competing efficiency droop models for GaN-based light-emitting diodes , 2015 .

[2]  D. Morgan,et al.  First-principles studies on molecular beam epitaxy growth of GaAs1-xBix , 2015 .

[3]  Leon Shterengas,et al.  Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm , 2014 .

[4]  L. Mawst,et al.  GaAs1−y−zPyBiz, an alternative reduced band gap alloy system lattice-matched to GaAs , 2014 .

[5]  E. Kioupakis,et al.  Auger Recombination in GaAs from First Principles , 2014 .

[6]  T. Sajavaara,et al.  Variation of lattice constant and cluster formation in GaAsBi , 2013 .

[7]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[8]  E. Fred Schubert,et al.  Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop , 2013 .

[9]  E. Schubert,et al.  Efficiency droop in light‐emitting diodes: Challenges and countermeasures , 2013 .

[10]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[11]  E. O’Reilly,et al.  Impact of alloy disorder on the band structure of compressively strained gabixas1-x , 2013, 1303.1070.

[12]  R. Goldman,et al.  Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi , 2013 .

[13]  Handong Li,et al.  Bismuth-Containing Compounds , 2013 .

[14]  D. Morgan,et al.  Ab initio study of the strain dependent thermodynamics of Bi doping in GaAs , 2012 .

[15]  A. Krotkus,et al.  Photoluminescence investigation of GaAs1 − xBix/GaAs heterostructures , 2012 .

[16]  S. Sweeney,et al.  The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing , 2012 .

[17]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[18]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[19]  J. Piprek Efficiency droop in nitride‐based light‐emitting diodes , 2010 .

[20]  A. Bower Applied Mechanics of Solids , 2009 .

[21]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[22]  K. A. Bulashevich,et al.  Is Auger recombination responsible for the efficiency rollover in III-nitride light-emitting diodes? , 2008 .

[23]  A. Krotkus,et al.  Valence band anticrossing in GaBixAs1−x , 2007 .

[24]  Wladek Walukiewicz,et al.  Valence-band anticrossing in mismatched III-V semiconductor alloys , 2007 .

[25]  T. Tiedje,et al.  Giant spin-orbit bowing in GaAs1-xBix. , 2006, Physical review letters.

[26]  K. Oe,et al.  Molecular-beam epitaxy and characteristics of GaNyAs1−x−yBix , 2005 .

[27]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[28]  A. Janotti,et al.  Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs , 2002 .

[29]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[30]  S. Clark,et al.  Valence-band offset of the lattice-matched β-FeSi 2 (100)/Si(001) heterostructure , 2001 .

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[34]  R. H. Williams,et al.  Physics and technology of heterojunction devices , 1991 .

[35]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[36]  H. W. King Quantitative size-factors for metallic solid solutions , 1966 .