Spatio-temporal Networks: Modeling, Storing, and Querying Temporally-Detailed Roadmaps

Given spatio-temporal networks (e.g., roadmaps with traffic speed reported as a time-series in 5 min increments over a typical day for each road-segment) and operators (e.g., network snapshot, shortest path or path evaluation), a spatio-temporal network model provides a computer representation to facilitate reasoning, analysis and algorithm design for important societal applications. For example, next generation routing services are estimated to save consumers hundreds of billions of dollars in terms of time and fuel saved by 2020. Developing a model for spatio-temporal networks is challenging due to potentially conflicting requirements of expressiveness and model simplicity. Related work in Time Geography models spatio-temporal movement and relationships via dimension-based representations such as space-time prisms and space-time trajectories. These representations are not adequate for many STN use-cases, such as spatio-temporal routing queries. To address these limitations, we discuss a novel model called time-aggregated graph (TAG) that allows the properties of the network to be modeled as a time series. This model retains spatial network information while reducing the temporal replication needed in other models, thus resulting in a much more efficient model for several computational techniques for routing problems. In this chapter, we discuss spatio-temporal networks as represented by time-aggregated graphs at a conceptual, logical, and physical level. This chapter also focuses on shortest path algorithms for spatio-temporal networks. We develop the topics via case studies using TAGs in context of Lagrangian shortest-path queries and evacuation route planning.

[1]  Mark Harrower,et al.  A Look at the History and Future of Animated Maps , 2004, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[2]  May Yuan,et al.  Assessing Similarity of Geographic Processes and Events , 2005, Trans. GIS.

[3]  Farnoush Banaei Kashani,et al.  A case for time-dependent shortest path computation in spatial networks , 2010, GIS '10.

[4]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[5]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[6]  Jörg-Rüdiger Sack,et al.  Shortest paths in time-dependent FIFO networks using edge load forecasts , 2009, IWCTS '09.

[7]  H. Miller A MEASUREMENT THEORY FOR TIME GEOGRAPHY , 2005 .

[8]  Shashi Shekhar,et al.  Encyclopedia of GIS , 2007, Encyclopedia of GIS.

[9]  D. O'Sullivan Geographical information science: time changes everything , 2005 .

[10]  Donna Peuquet,et al.  An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data , 1995, Int. J. Geogr. Inf. Sci..

[11]  Patrick Bogaert,et al.  Temporal GIS: Advanced Functions for Field-Based Applications , 2002 .

[12]  Ariel Orda,et al.  Minimum weight paths in time-dependent networks , 1991, Networks.

[13]  L. Burns Transportation, temporal, and spatial components of accessibility , 1979 .

[14]  Shashi Shekhar,et al.  Capacity Constrained Routing Algorithms for Evacuation Planning: A Summary of Results , 2005, SSTD.

[15]  Andrew U. Frank,et al.  Ontology for Spatio-temporal Databases , 2003, Spatio-Temporal Databases: The CHOROCHRONOS Approach.

[16]  Robert L. Smith,et al.  Fastest Paths in Time-dependent Networks for Intelligent Vehicle-Highway Systems Application , 1993, J. Intell. Transp. Syst..

[17]  Ariel Orda,et al.  Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.

[18]  Martin Skutella,et al.  Time-Expanded Graphs for Flow-Dependent Transit Times , 2002, ESA.

[19]  M. Kwan Gis methods in time‐geographic research: geocomputation and geovisualization of human activity patterns , 2004 .

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  Hanan Samet,et al.  Spatial Data Structures , 1995, Modern Database Systems.

[22]  Yang Du,et al.  Finding Fastest Paths on A Road Network with Speed Patterns , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[23]  Shashi Shekhar,et al.  Evacuation route planning: scalable heuristics , 2007, GIS.

[24]  Dorothea Wagner,et al.  Landmark-Based Routing in Dynamic Graphs , 2007, WEA.

[25]  Shashi Shekhar,et al.  Modeling Spatio-temporal Network Computations: A Summary of Results , 2007, GeoS.

[26]  Shashi Shekhar,et al.  CCAM: A Connectivity-Clustered Access Method for Networks and Network Computations , 1997, IEEE Trans. Knowl. Data Eng..

[27]  Max J. Egenhofer,et al.  Spatial and temporal reasoning in geographic information systems , 1998 .

[28]  Michael Batty,et al.  Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics , 2005 .

[29]  Chengyang Zhang,et al.  Advances in Spatial and Temporal Databases , 2015, Lecture Notes in Computer Science.

[30]  G. Langran,et al.  A Framework For Temporal Geographic Information , 1988 .

[31]  Alan M. MacEachren,et al.  Animation and the Role of Map Design in Scientific Visualization , 1992 .

[32]  P.F. Gorder,et al.  Simulating Sprawl , 2004, Computing in Science & Engineering.

[33]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[34]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[35]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[36]  Ismail Chabini,et al.  Discrete Dynamic Shortest Path Problems in Transportation Applications: Complexity and Algorithms with Optimal Run Time , 1998 .

[37]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[38]  Farnoush Banaei Kashani,et al.  Online Computation of Fastest Path in Time-Dependent Spatial Networks , 2011, SSTD.

[39]  A. Pred 'THE CHOREOGRAPHY OF EXISTENCE: COMMENTS ON HAGERSTRAND'S TIME-GEOGRAPHY AND ITS USEFULNESS , 1977 .

[40]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[41]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[42]  Yan Huang,et al.  Evacuation Planning: A Capacity Constrained Routing Approach , 2003, ISI.

[43]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[44]  Andrew U. Frank,et al.  Chorochronos a Research Network for Spatiotemporal Database Systems , 2022 .

[45]  Steffen Staab,et al.  Journal on Data Semantics XI , 2008, Journal on Data Semantics XI.

[46]  B. Lenntorp Paths in space-time environments : a time-geographic study of movement possibilities of individuals , 1976 .

[47]  Shashi Shekhar,et al.  Minimum Spanning Tree on Spatio-Temporal Networks , 2010, DEXA.

[48]  Jeffrey Xu Yu,et al.  Finding time-dependent shortest paths over large graphs , 2008, EDBT '08.

[49]  Hans-Peter Kriegel,et al.  Route skyline queries: A multi-preference path planning approach , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[50]  S. Pallottino,et al.  Shortest Path Algorithms in Transportation models: classical and innovative aspects , 1997 .

[51]  Donald G. Janelle,et al.  Impact of Information Technologies , 2004 .

[52]  Harvey J. Miller,et al.  Measuring Space‐Time Accessibility Benefits within Transportation Networks: Basic Theory and Computational Procedures , 1999 .

[53]  Shashi Shekhar,et al.  Time-Aggregated Graphs for Modeling Spatio-temporal Networks , 2006, J. Data Semant..

[54]  Antony Galton,et al.  Processes and Events in Dynamic Geo-Networks , 2005, GeoS.

[55]  Alexandre M. Bayen,et al.  Incorporation of Lagrangian measurements in freeway traffic state estimation , 2010 .

[56]  Ta Theo Arentze,et al.  Analysing space-time behaviour: new approaches to old problems , 2002 .

[57]  Mark Monmonier,et al.  Strategies for the visualization of geographic time-series data , 1990 .

[58]  Daniel Delling Time-Dependent SHARC-Routing , 2008, ESA.

[59]  Michael F. Goodchild,et al.  Towards a general theory of geographic representation in GIS , 2007, Int. J. Geogr. Inf. Sci..

[60]  George Karypis,et al.  Multilevel algorithms for partitioning power-law graphs , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[61]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[62]  Shashi Shekhar,et al.  A Critical-Time-Point Approach to All-Start-Time Lagrangian Shortest Paths: A Summary of Results , 2011, SSTD.

[63]  G. Langran Time in Geographic Information Systems , 1990 .

[64]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[65]  Shashi Shekhar,et al.  Evacuation Route Planning: a Case Study in Semantic Computing , 2007, Int. J. Semantic Comput..

[66]  Richard L. Francis,et al.  EVACNET+: A computer program to determine optimal building evacuation plans , 1985 .

[67]  Ismaïl Chabini,et al.  Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks , 2002, IEEE Trans. Intell. Transp. Syst..

[68]  Shashi Shekhar,et al.  Spatio-temporal Network Databases and Routing Algorithms: A Summary of Results , 2007, SSTD.

[69]  Éva Tardos,et al.  Polynomial time algorithms for some evacuation problems , 1994, SODA '94.