Asymptotic results for multivariate local Whittle estimation with applications

The asymptotic normality result is obtained for local Whittle estimators of all model parameters in a general formulation of multivariate long memory. The result is then used in devising a global statistical test for the so-called fractal non-connectivity, and in deriving the asymptotics of LASSO estimators of parameters in the so-called long-run variance matrix and its inverse. Some numerical illustrations are also provided.

[1]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[2]  E. Bullmore,et al.  Fractal connectivity of long-memory networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  M. Nielsen Local Whittle Analysis of Stationary Fractional Cointegration and the Implied–Realized Volatility Relation , 2007 .

[4]  A. U.S.,et al.  Sparse Estimation of a Covariance Matrix , 2010 .

[5]  Patrice Abry,et al.  Fast and exact synthesis of stationary multivariate Gaussian time series using circulant embedding , 2011, Signal Process..

[6]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[7]  P. Robinson Multiple Local Whittle Estimation in Stationary Systems , 2007, 0811.0948.

[8]  G. Didier,et al.  Multivariate Hadamard self-similarity: testing fractal connectivity , 2017, 1701.04366.

[9]  Changryong Baek,et al.  Semiparametric, parametric, and possibly sparse models for multivariate long-range dependence , 2017, Optical Engineering + Applications.

[10]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[11]  Patrice Abry,et al.  Testing fractal connectivity in multivariate long memory processes , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Katsumi Shimotsu,et al.  Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach , 2007 .

[13]  Katsumi Shimotsu,et al.  Gaussian semiparametric estimation of multivariate fractionally integrated processes , 2007 .

[14]  V. Pipiras,et al.  Asymptotics of bivariate local Whittle estimators with applications to fractal connectivity , 2020 .

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  Jan Beran,et al.  Long-Memory Processes: Probabilistic Properties and Statistical Methods , 2013 .

[17]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[18]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[19]  V. Pipiras,et al.  DEFINITIONS AND REPRESENTATIONS OF MULTIVARIATE LONG‐RANGE DEPENDENT TIME SERIES , 2015 .

[20]  Frank Nielsen Local Whittle estimation of multi‐variate fractionally integrated processes , 2011 .