Improving the DISPGB algorithm using the discriminant ideal

In 1992, V. Weispfenning proved the existence of Comprehensive Grobner Bases (CGB) and gave an algorithm for computing one. That algorithm was not very efficient and not canonical. Using his suggestions, A. Montes obtained in 2002 a more efficient algorithm (DISPGB) for Discussing Parametric Grobner Bases. Inspired by its philosophy, V. Weispfenning defined, in 2002, how to obtain a Canonical Comprehensive Grobner Basis (CCGB) for parametric polynomial ideals, and provided a constructive method. In this paper we use Weispfenning?s CCGB ideas to make substantial improvements on Montes? DISPGB algorithm. It now includes rewriting of the discussion tree using the discriminant ideal and provides a compact and effective discussion. We also describe the new algorithms in the DPGB library containing the improved DISPGB as well as new routines for checking whether a given basis is a CGB or not, and for obtaining a CGB. Examples and tests are also provided.

[1]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[2]  Akira Suzuki,et al.  ACGB on Varieties , 2003 .

[3]  William Y. Sit An Algorithm for Solving Parametric Linear Systems , 1992, J. Symb. Comput..

[4]  Bernard Mourrain,et al.  Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.

[5]  Stéphane Dellière Triangularisation de systèmes constructibles : application à l'évaluation dynamique , 1999 .

[6]  佐藤 洋祐,et al.  特集 Comprehensive Grobner Bases , 2007 .

[7]  Michael Kalkbrener,et al.  On the Stability of Gröbner Bases Under Specializations , 1997, J. Symb. Comput..

[8]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[9]  Antonio Montes,et al.  A New Algorithm for Discussing Gröbner Bases with Parameters , 2002, J. Symb. Comput..

[10]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[11]  Barry M. Trager,et al.  Degree reduction under specialization , 2001 .

[12]  Patrizia M. Gianni,et al.  Properties of Gröbner bases under specializations , 1987, EUROCAL.

[13]  Akira Suzuki,et al.  An alternative approach to comprehensive Gröbner bases , 2002, ISSAC '02.

[14]  Laureano González-Vega,et al.  Gröbner bases specialization through Hilbert functions: the homogeneous case , 2000, SIGS.

[15]  Jordi Castro,et al.  Solving the load flow problem using Gröbner basis , 1995, SIGS.

[16]  David Orden,et al.  Finding tensegrity structures: geometric and symbolic approaches , 2004 .

[17]  Deepak Kapur,et al.  An Approach for Solving Systems of Parametric Polynomial Equations , 1993 .

[18]  Antonio Montes Algebraic solution of the load-flow problem for a 4-nodes electrical network , 1998 .

[19]  D. Duval Evaluation dynamique et clôture algébrique en axiom , 1995 .

[20]  Volker Weispfenning,et al.  Canonical comprehensive Gröbner bases , 2002, ISSAC '02.

[21]  Marek R Rychlik Complexity and Applications of Parametric Algorithms of Computational Algebraic Geometry , 2000 .

[22]  Marc Moreno Maza,et al.  Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .

[23]  Akira Suzuki,et al.  An alternative approach to comprehensive Gröbner bases , 2002, ISSAC '02.