Deterministic-stochastic subspace identification method for identification of nonlinear structures as time-varying linear systems

Abstract This paper proposes the use of the deterministic-stochastic subspace identification (DSI) method, an input-output parametric linear system identification method, for characterization of nonlinear dynamic structural systems based on their time-varying amplitude-dependent instantaneous (i.e., based on short time-windows) modal parameters. Performance of the DSI method for estimation of instantaneous modal parameters of nonlinear systems is investigated using numerical as well as experimental data. In this study, DSI is used for extracting instantaneous modal parameters of single degree-of-freedom (SDOF) as well as 7-DOF systems with different hysteretic material behavior. Nonlinear responses of the SDOF and 7-DOF systems are simulated due to different seismic excitations using the OpenSees structural analysis software. Modal identification results are compared with those obtained using wavelet transform and the exact values. Effects of four input factors are studied on the variability of identified instantaneous modal parameters: (1) type of material nonlinearity, (2) level of nonlinearity, (3) input excitation, and (4) length of data windows used in the identification. The accuracy of the identified instantaneous modal parameters is evaluated along the response time history while varying the above mentioned input factors. Overall, DSI outperforms the wavelet transform for short-time/instantaneous modal identification of nonlinear structural systems and provides reasonably accurate results especially when the material hysteretic behavior is smooth such as the considered Giuffre-Menegotto-Pinto hysteretic model. Finally, DSI has been applied for short-time modal identification of a full-scale seven-story reinforced concrete shear wall structure based on its measured response to different seismic base excitations on a shake table. The identified instantaneous natural frequencies of the first vibration mode can accurately track the variation in the structure's effective stiffness along its response.

[1]  Yu Lei,et al.  Hilbert-Huang Based Approach for Structural Damage Detection , 2004 .

[2]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[3]  Christophe Pierre,et al.  Non-linear normal modes and invariant manifolds , 1991 .

[4]  Michael Feldman,et al.  Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method 'Freevib' , 1994 .

[5]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  W. Staszewski IDENTIFICATION OF DAMPING IN MDOF SYSTEMS USING TIME-SCALE DECOMPOSITION , 1997 .

[8]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[9]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[10]  Joel P. Conte,et al.  Finite-Element Model Updating for Assessment of Progressive Damage in a 3-Story Infilled RC Frame , 2013 .

[11]  A. Miyamoto,et al.  Wavelet transform-based modal parameter identification considering uncertainty , 2006 .

[12]  Filipe Magalhães,et al.  Damping Estimation Using Free Decays and Ambient Vibration Tests , 2010 .

[13]  Joel P. Conte,et al.  System Identification of Alfred Zampa Memorial Bridge Using Dynamic Field Test Data , 2009 .

[14]  Guido De Roeck,et al.  Combined Experimental-Operational Modal Testing of Footbridges , 2010 .

[15]  Yves Grenier,et al.  Time-dependent ARMA modeling of nonstationary signals , 1983 .

[16]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Guido De Roeck,et al.  Uncertainty analysis of modal parameters obtained from SSI , 2007 .

[18]  Erik A. Johnson,et al.  NATURAL EXCITATION TECHNIQUE AND EIGENSYSTEM REALIZATION ALGORITHM FOR PHASE I OF THE IASC-ASCE BENCHMARK PROBLEM: SIMULATED DATA , 2004 .

[19]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[20]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[21]  Alexander F. Vakakis,et al.  NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW , 1997 .

[22]  C. Loh,et al.  Time Domain Identification of Frames under Earthquake Loadings , 2000 .

[23]  Ahsan Kareem,et al.  ON THE PRESENCE OF END EFFECTS AND THEIR MELIORATION IN WAVELET-BASED ANALYSIS , 2002 .

[24]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[25]  Rosario Ceravolo,et al.  Instantaneous Identification of Degrading Hysteretic Oscillators Under Earthquake Excitation , 2010 .

[26]  Ahsan Kareem,et al.  Wavelet Transforms for System Identification in Civil Engineering , 2003 .

[27]  Solomon C. Yim,et al.  Parameter Identification of Nonlinear Ocean Mooring Systems Using the Hilbert Transform , 1996 .

[28]  Richard W. Longman,et al.  Obtaining refined first‐order predictive models of linear structural systems , 2002 .

[29]  J. G. Chase,et al.  LMS-based approach to structural health monitoring of nonlinear hysteretic structures , 2011 .

[30]  Poul Henning Kirkegaard,et al.  Prediction of Seismic Damage-Based Degradation in RC Structures , 1999 .

[31]  T. K. Hasselman,et al.  Principal components analysis for nonlinear model correlation, updating and uncertainty evaluation , 1998 .

[32]  C. Farrar,et al.  SYSTEM IDENTIFICATION FROM AMBIENT VIBRATION MEASUREMENTS ON A BRIDGE , 1997 .

[33]  Massimo Ruzzene,et al.  NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .

[34]  Charles R. Farrar,et al.  A summary review of vibration-based damage identification methods , 1998 .

[35]  Joel P. Conte,et al.  System Identification Study of a 7-Story Full-Scale Building Slice Tested on the UCSD-NEES Shake Table , 2011 .

[36]  C. S. Huang,et al.  Identification of Time‐Variant Modal Parameters Using Time‐Varying Autoregressive with Exogenous Input and Low‐Order Polynomial Function , 2009, Comput. Aided Civ. Infrastructure Eng..

[37]  Agathoklis Giaralis,et al.  Numerical Treatment of Seismic Accelerograms and of Inelastic Seismic Structural Responses Using Harmonic Wavelets , 2007, Comput. Aided Civ. Infrastructure Eng..

[38]  Hoon Sohn,et al.  A Review of Structural Health Review of Structural Health Monitoring Literature 1996-2001. , 2002 .

[39]  Gaëtan Kerschen,et al.  PROPER ORTHOGONAL DECOMPOSITION FOR MODEL UPDATING OF NON-LINEAR MECHANICAL SYSTEMS , 2001 .

[40]  John B. Mander,et al.  Parameter identification for degrading and pinched hysteretic structural concrete systems , 1997 .

[41]  Guido De Roeck,et al.  REFERENCE-BASED STOCHASTIC SUBSPACE IDENTIFICATION FOR OUTPUT-ONLY MODAL ANALYSIS , 1999 .

[42]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[43]  Spilios D. Fassois,et al.  Output-only stochastic identification of a time-varying structure via functional series TARMA models , 2009 .

[44]  Michael Feldman,et al.  Non-linear system vibration analysis using Hilbert transform--II. Forced vibration analysis method 'Forcevib' , 1994 .

[45]  Ayaho Miyamoto,et al.  A Comparative Study of Modal Parameter Identification Based on Wavelet and Hilbert–Huang Transforms , 2006, Comput. Aided Civ. Infrastructure Eng..

[46]  Carlos E. Ventura,et al.  Damping estimation by frequency domain decomposition , 2001 .

[47]  Richard W. Longman,et al.  Identification of linear systems by an asymptotically stable observer , 1992 .

[48]  Joel P. Conte,et al.  Shake-Table Test of a Full-Scale 7-Story Building Slice. Phase I: Rectangular Wall , 2011 .

[49]  Ahsan Kareem,et al.  Time-frequency analysis of wind effects on structures , 2002 .

[50]  Nopdanai Ajavakom,et al.  Performance of nonlinear degrading structures: Identification, validation, and prediction , 2008 .

[51]  Michael Feldman,et al.  NON-LINEAR FREE VIBRATION IDENTIFICATION VIA THE HILBERT TRANSFORM , 1997 .

[52]  Spilios D. Fassois,et al.  Parametric time-domain methods for non-stationary random vibration modelling and analysis — A critical survey and comparison , 2006 .

[53]  N. Huang,et al.  System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes , 2003 .

[54]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[55]  Gaëtan Kerschen,et al.  Identification of a continuous structure with a geometrical non-linearity. Part II: Proper orthogonal decomposition , 2003 .

[56]  Alexander F. Vakakis,et al.  NONLINEAR NORMAL MODES , 2001 .