Word Sense Representations

In this chapter, techniques for representing the multiple meanings of a single word are discussed. This is a growing area, and is particularly important in languages where polysemous and homonymous words are common. This includes English, but it is even more prevalent in Mandarin for example. The techniques discussed can broadly be classified as lexical word sense representation, and as word sense induction. The inductive techniques can be sub-classified as clustering -based or as prediction-based.

[1]  Hinrich Schütze,et al.  Automatic Word Sense Discrimination , 1998, Comput. Linguistics.

[2]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[3]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[4]  Richard Johansson,et al.  Neural context embeddings for automatic discovery of word senses , 2015, VS@HLT-NAACL.

[5]  Eneko Agirre,et al.  Evaluating and optimizing the parameters of an unsupervised graph-based WSD algorithm , 2006 .

[6]  H. Schwenk,et al.  Efficient training of large neural networks for language modeling , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[7]  Eneko Agirre,et al.  Semeval-2007 Task 2 : Evaluating Word Sense Induction and Discrimination , 2007 .

[8]  Walter Daelemans,et al.  Pattern for Python , 2012, J. Mach. Learn. Res..

[9]  Andrew McCallum,et al.  Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space , 2014, EMNLP.

[10]  Enhong Chen,et al.  A Probabilistic Model for Learning Multi-Prototype Word Embeddings , 2014, COLING.

[11]  Mohammed Bennamoun,et al.  Generating Bags of Words from the Sums of Their Word Embeddings , 2016, CICLing.

[12]  Roberto Navigli,et al.  SemEval-2007 Task 07: Coarse-Grained English All-Words Task , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[13]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[14]  Zhiyuan Liu,et al.  A Unified Model for Word Sense Representation and Disambiguation , 2014, EMNLP.

[15]  Adam Kilgarriff,et al.  The Senseval-3 English lexical sample task , 2004, SENSEVAL@ACL.

[16]  Patrick Pantel,et al.  Discovering word senses from text , 2002, KDD.

[17]  Annalina Caputo,et al.  An Enhanced Lesk Word Sense Disambiguation Algorithm through a Distributional Semantic Model , 2014, COLING.

[18]  G. Zipf The meaning-frequency relationship of words. , 1945, The Journal of general psychology.

[19]  Simone Paolo Ponzetto,et al.  BabelNet: Building a Very Large Multilingual Semantic Network , 2010, ACL.

[20]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[21]  Andrew Y. Ng,et al.  Improving Word Representations via Global Context and Multiple Word Prototypes , 2012, ACL.

[22]  Roberto Navigli,et al.  Entity Linking meets Word Sense Disambiguation: a Unified Approach , 2014, TACL.

[23]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[24]  Anton Osokin,et al.  Breaking Sticks and Ambiguities with Adaptive Skip-gram , 2015, AISTATS.

[25]  Roberto Navigli,et al.  SemEval-2015 Task 13: Multilingual All-Words Sense Disambiguation and Entity Linking , 2015, *SEMEVAL.

[26]  Ignacio Iacobacci,et al.  SensEmbed: Learning Sense Embeddings for Word and Relational Similarity , 2015, ACL.

[27]  Omer Levy,et al.  Neural Word Embedding as Implicit Matrix Factorization , 2014, NIPS.

[28]  Raymond J. Mooney,et al.  Multi-Prototype Vector-Space Models of Word Meaning , 2010, NAACL.

[29]  Yuen Ren Chao,et al.  Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology , 1950 .

[30]  Adam Kilgarriff,et al.  How Dominant Is the Commonest Sense of a Word? , 2004, TSD.

[31]  Jon M. Kleinberg,et al.  An Impossibility Theorem for Clustering , 2002, NIPS.