Recent Advances in Processing, Structural and Dielectric Properties of PMN-PT Ferroelectric Ceramics at Compositions Around the MPB

Ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 (PMN-PT) solid solutions are known for their exceptional electromechanical properties, sometimes one order of magnitude larger than classical PbZr1-xTixO3 (PZT) ceramics. Prepared with a suitable x composition, PMN-PT is technologically important for fabricating some of the most important solid state devices such as a piezoelectric transducer, actuator, FERAM, etc. PMN-PT ceramics, thin films or single crystal forms can be prepared with high piezoelectric coefficients, a high dielectric constant and a low dielectric loss. Some compositions of PMN-PT single crystals exhibit a very high piezoelectric coefficient (d33) and electromechanical coupling coefficients (k33) (d33 ~ 1240 pC/N and k33 ~ 0.923), a high dielectric constant (e ~ 3100) with low dielectric loss (tanδ ~ 0.014) compared to those of polycrystalline ceramics (d33 ~ 690 pC/N and k33 ~ 0.73) (Park & Shrout, 1997; Viehland et al., 2001). Recently, researchers have also reported that PMN-PT single crystals have high remanent polarization (Pr ~ 35 μC/cm2) at a low coercive field (Ec ~ 3.4 kV/cm), a high dielectric constant (e ~ 2500), low loss tangent (tanδ ~ 0.031), the highest piezoelectric coefficient (d33 ~ 1500 pC/N) and a high electrochemical coupling coefficient (k33 ~ 0.82) for grain-oriented PMN–PT ceramics (Sun et al., 2004). The piezoelectric coefficient dij determines the stress levels induced by a given electric field and thus is the parameter most frequently used to describe the performance of an actuator. PMN-PT solid solutions present a perovskite ABO3 structure, where the A site is occupied by the Pb2+ ion, while the B site is randomly occupied by Mg2+, Nb5+ and Ti4+ ions. Different compositions of the PMN-PT present distinct physical properties. The complex perovskite Pb(Mg1/3Nb2/3)O3 (x = 0) is a typical relaxor ferroelectric, characterized by a diffuse maximum of the dielectric constant associated with considerable frequency dispersion, that exhibits a non-polar paraelectric phase at high temperatures, similar in many aspects to normal ferroelectrics (Bokov & Ye, 2006). After cooling, a transformation occurs from the paraelectric phase to the ergodic relaxor state, characterized by the presence of polar nanoregions randomly distributed by the specimen, at the Burns temperature (TB). This transformation is not accompanied by changes in the crystal structure on the macroscopic or mesoscopic scale and therefore cannot be considered a structural phase transition. In general, the state of a relaxor crystal at T < TB is frequently considered a new phase different from the paraelectric phase, since the polar nanoregions substantially affect the behavior of

[1]  E. Araújo,et al.  Investigation on dielectric response of PMN ceramics around paraelectric–ferroelectric diffuse phase transition , 2009 .

[2]  G. Shirane,et al.  Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 2001, cond-mat/0107276.

[3]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[4]  Jingkui Liang,et al.  Structural transition in unpoled (1-x)PMN-xPT ceramics near the morphotropic boundary , 2006 .

[5]  L. Bellaiche,et al.  Intermediate temperature scale T* in lead-based relaxor systems , 2009, 0901.2604.

[6]  Dhananjai Pandey,et al.  Origin of high piezoelectric response of Pb(ZrxTi1-x)O3 at the morphotropic phase boundary : Role of elastic instability , 2008 .

[7]  S. Trolier-McKinstry,et al.  High Strain, 〈001〉 Textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 Ceramics: Templated Grain Growth and Piezoelectric Properties , 2005 .

[8]  V. Isupov Comments on the paper “X-ray study of the PZT solid solutions near the morphotropic phase transition” , 1975 .

[9]  李莹,et al.  溶胶-凝胶法制备纳米Pb(Zr_(0.52)Ti_(0.48))O_3 , 2002 .

[10]  D. Johnson Sol-gel processing of ceramics and glass , 1985 .

[11]  T. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  A. Singh,et al.  Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study , 2002, cond-mat/0210108.

[13]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[14]  A. G. S. Filho,et al.  Monoclinic phase of PbZr 0.52 Ti 0.48 O 3 ceramics: Raman and phenomenological thermodynamic studies , 2000 .

[15]  Thomas R. Shrout,et al.  Dielectric properties of lead-magnesium niobate ceramics , 1984 .

[16]  C. H. Perry,et al.  INFRARED STUDIES OF PEROVSKITE TITANATES , 1964 .

[17]  A. G. S. Filho,et al.  Synthesis of slightly 〈1 1 1〉-oriented 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 ceramic prepared from fine powders , 2007 .

[18]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[19]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[20]  B. Noheda,et al.  Bridging phases at the morphotropic boundaries of lead oxide solid solutions , 2005, cond-mat/0511256.

[21]  A. Singh,et al.  Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2001 .

[22]  I-Wei Chen,et al.  Temperature–Time Texture Transition of Pb(Zr1−xTix)O3 Thin Films: II, Heat Treatment and Compositional Effects , 1994 .

[23]  Jun Ma,et al.  Preparation of PMN powders and ceramics via a high-energy ball milling process , 2001 .

[24]  J. Hlinka,et al.  Infrared dielectric response of relaxor ferroelectrics , 2006 .

[25]  J. Kreisel,et al.  Phase transitions and ferroelectrics: revival and the future in the field , 2009 .

[26]  R. C. Miller,et al.  Far Infrared Dielectric Dispersion in KTaO3 , 1963 .

[27]  A. Boutarfaia,et al.  Effect of composition on the electromechanical properties of Pb[ZrxTi(0.9 − x)(Cr1/5, Zn1/5, Sb3/5)0.1]O3 ceramics , 2007 .

[28]  Risto M. Nieminen,et al.  Evidence against the polarization rotation model of piezoelectric perovskites at the morphotropic phase boundary , 2008, 0810.2701.

[29]  L. Benguigui,et al.  X-ray study of the PZT solid solutions near the morphotropic phase transition , 1974 .

[30]  Augusto Hasman,et al.  Comments on the paper , 2012 .

[31]  D. Viehland,et al.  Direct high-resolution transmission electron microscopy observation of tetragonal nanotwins within the monoclinic MC phase of Pb(Mg1∕3Nb2∕3)O3-0.35PbTiO3 crystals , 2008 .

[32]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .

[33]  O. Noblanc,et al.  Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary , 1996 .

[34]  A. Khachaturyan Ferroelectric solid solutions with morphotropic boundary: Rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states , 2010 .

[35]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[36]  T. Shrout,et al.  Dielectric properties of pyrochlore lead magnesium niobate , 1983 .

[37]  A. Singh,et al.  Powder neutron diffraction study of phase transitions in and a phase diagram of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2006 .

[38]  W. Shih,et al.  Single‐Calcination Synthesis of Pyrochlore‐Free 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 and Pb(Mg1/3Nb2/3)O3 Ceramics Using a Coating Method , 2003 .

[39]  J. Rocha,et al.  An easy way to Pb(Mg1/3Nb2/3)O3 synthesis , 2002 .

[40]  K. Yoon,et al.  Characteristics of Lead Magnesium Niobate Thin Film Prepared by Sol‐Gel Processing Using a Complexing Agent , 1995 .

[41]  S. Baik,et al.  Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O3 ceramics. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[42]  H. Yamamura,et al.  A compositional fluctuation and properties of Pb(Zr, Ti)O3 , 1977 .

[43]  Z. Ye,et al.  Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals , 2000 .

[44]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[45]  B. Sahoo,et al.  Preparation of pyrochlore-free PMN powder by semi-wet chemical route , 2005 .

[46]  D. Pandey,et al.  On the discovery of new low temperature monoclinic phases with Cm and Cc space groups in Pb(Zr0.52Ti0.48)O3: an overview , 2003 .

[47]  Thomas R. Shrout,et al.  Fabrication of perovskite lead magnesium niobate , 1982 .

[48]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[49]  I. Reaney,et al.  Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution , 2005 .

[50]  R. C. Miller,et al.  Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2 , 1962 .

[51]  Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3 , 2000, cond-mat/0006152.

[52]  Thomas R. Shrout,et al.  Morphotropic phase boundary in Pb (Mg13Nb23) O3-PbTiO3 system , 1989 .

[53]  Gary L. Messing,et al.  Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics , 2001 .

[54]  W. Schulze,et al.  The Role of Excess Magnesium Oxide or Lead Oxide in Determining the Microstructure and Properties of Lead Magnesium Niobate , 1990 .

[55]  Ragini,et al.  Antiferrodistortive phase transition in Pb(Ti 0.48 Zr 0.52 )O 3 : space group of the lowest temperature monoclinic phase , 2002 .

[56]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[57]  A. G. S. Filho,et al.  Raman scattering study of the PbZr 1¿x Ti x O 3 system: Rhombohedral-monoclinic-tetragonal phase transitions , 2002 .

[58]  W. E. Lee,et al.  Fabrication, characterisation and formation mechanism of Pb1.83Mg0.29Nb1.71O6.39 pyrochlore , 1997 .

[59]  Ragini,et al.  Comparison of the Cc and R3c space groups for the superlattice phase of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} , 2005 .

[60]  D. Vanderbilt,et al.  Finite-Temperature Properties of Pb Zr 1 2 x Ti x O 3 Alloys from First Principles , 2000 .

[61]  N. Zhang,et al.  Crystal structure of the rhombohedral phase of PbZr1-xTixO3 ceramics at room temperature , 2009 .

[62]  E. Colla,et al.  Domain structure changes in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 with composition, dc bias, and ac field , 2004 .

[63]  V. Topolov Monoclinic phases and stress-relief conditions in (1 − x)Pb(Mg1/3Nb2/3)TiO3–xPbTiO3 solid solutions , 2009 .

[64]  Z. Ye,et al.  Domain structure in the monoclinic Pm phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2003, cond-mat/0306686.

[65]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[66]  S. Mishra,et al.  Effect of phase coexistence at morphotropic phase boundary on the properties of Pb(ZrxTi1−x)O3 ceramics , 1996 .

[67]  M. Senna,et al.  Synthesis of Pyrochlore‐Free 0.9Pb(Mg1/3Nb2/3)O3‐0.1PbTiO3 Ceramics via a Soft Mechanochemical Route , 2005 .

[68]  L. E. Cross,et al.  Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite : The structure of PbZr0.52Ti0.48O3 , 2000 .

[69]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[70]  Ragini,et al.  Antiferrodistortive phase transition in Pb ( Ti 0.48 Zr 0.52 ) O 3 : A powder neutron diffraction study , 2002 .

[71]  A. Halliyal,et al.  Low‐Temperature Synthesis, Characterization, and Properties of Lead‐Based Ferroelectric Niobates , 2005 .

[72]  Thomas R. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[73]  Ahmad Safari,et al.  Effect of Composition on the Electromechanical Properties of (1‐x)Pb(Mg1/3Nb2/3)O3−XPbTiO3 Ceramics , 2005 .