A novel cysteine catalytic oxidation-based colorimetric approach for sensitive analysis of acute pancreatitis-related microRNA

[1]  Hong Qin,et al.  Molecular mechanism analysis of m6A modification-related lncRNA-miRNA-mRNA network in regulating autophagy in acute pancreatitis , 2022, Islets.

[2]  Li‐Ping Xu,et al.  Biomineralization-inspired magnetic nanoflowers for sensitive miRNA detection based on exonuclease-assisted target recycling amplification , 2022, Microchimica Acta.

[3]  H. Park,et al.  Palindromic hyperbranched rolling circle amplification enabling ultrasensitive microRNA detection. , 2022, Chemical communications.

[4]  A. Keller,et al.  Emerging concepts of miRNA therapeutics: from cells to clinic. , 2022, Trends in genetics : TIG.

[5]  S. Petralia,et al.  A highly sensitive PNA‐microarray system for miRNA122 recognition , 2022, Biotechnology journal.

[6]  Yongqiang Cheng,et al.  Integration of the Ligase Chain Reaction with the CRISPR-Cas12a System for Homogeneous, Ultrasensitive, and Visual Detection of microRNA. , 2022, Analytical chemistry.

[7]  E. Ban,et al.  Considerations and Suggestions for the Reliable Analysis of miRNA in Plasma Using qRT-PCR , 2022, Genes.

[8]  Xianting Ding,et al.  Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection , 2022, Phenomics.

[9]  Wenbing Shi,et al.  Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. , 2021, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[10]  Y. Wen,et al.  Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. , 2021, Biosensors & bioelectronics.

[11]  M. Stoffel,et al.  miR-802 Suppress Acinar-to-Ductal Reprogramming during Early Pancreatitis and Pancreatic Carcinogenesis. , 2021, Gastroenterology.

[12]  S. Pandol,et al.  Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis , 2021, JCI insight.

[13]  S. Wallet,et al.  Characterization of extracellular vesicle miRNA identified in peripheral blood of chronic pancreatitis patients , 2021, Molecular and Cellular Biochemistry.

[14]  Y. Rondelez,et al.  Advances in multiplexed techniques for the detection and quantification of microRNAs. , 2021, Chemical Society reviews.

[15]  A. Mohammadi,et al.  Colorimetric detection of miRNA-21 by DNAzyme-coupled branched DNA constructs. , 2020, Talanta.

[16]  Ying Wang,et al.  RCA-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle microRNAs. , 2019, Analytical chemistry.

[17]  Yannick Rondelez,et al.  Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. , 2019, Molecular aspects of medicine.

[18]  H. McCarthy,et al.  MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators , 2019, BMC Cancer.

[19]  Ling Lan,et al.  A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy. , 2019, Analytica chimica acta.

[20]  Cheulhee Jung,et al.  Ultrasensitive detection of miRNA via one-step rolling circle-quantitative PCR (RC-qPCR). , 2019, Analytica chimica acta.

[21]  K. Saliminejad,et al.  An overview of microRNAs: Biology, functions, therapeutics, and analysis methods , 2018, Journal of cellular physiology.

[22]  V. Rani,et al.  Exploring miRNA based approaches in cancer diagnostics and therapeutics. , 2016, Critical reviews in oncology/hematology.

[23]  Cláudia Martinho,et al.  Detection of MicroRNAs by Northern Blot. , 2023, Methods in molecular biology.

[24]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..