Kernel Hyperalignment

We offer a regularized, kernel extension of the multi-set, orthogonal Procrustes problem, or hyperalignment. Our new method, called Kernel Hyperalignment, expands the scope of hyperalignment to include nonlinear measures of similarity and enables the alignment of multiple datasets with a large number of base features. With direct application to fMRI data analysis, kernel hyperalignment is well-suited for multi-subject alignment of large ROIs, including the entire cortex. We report experiments using real-world, multi-subject fMRI data.

[1]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[2]  Bryan R. Conroy,et al.  Function-based Intersubject Alignment of Human Cortical Anatomy , 2009, Cerebral cortex.

[3]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[4]  Malte Kuss,et al.  The Geometry Of Kernel Canonical Correlation Analysis , 2003 .

[5]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[6]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[7]  LinChih-Jen,et al.  A tutorial on -support vector machines , 2005 .

[8]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[9]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[10]  Hao Xu,et al.  Regularized hyperalignment of multi-set fMRI data , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[11]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[12]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Chong-sun Kim Canonical Analysis of Several Sets of Variables , 1973 .

[15]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[16]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[17]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[18]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[19]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[20]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.

[21]  Bernhard Schölkopf,et al.  A tutorial on ν-support vector machines: Research Articles , 2005 .

[22]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[23]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.