Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling

Cell–cell communication via the production and detection of chemical signal molecules has been the focus of a great deal of research over the past decade. One class of chemical signals widely used by proteobacteria consists of N‐acyl‐homoserine lactones, which are synthesized by proteins related to LuxI of Vibrio fischeri and are detected by proteins related to the V. fischeri LuxR protein. A related marine bacterium, Vibrio harveyi, communicates using two chemical signals, one of which, autoinducer‐2 (AI‐2), is a furanone borate diester that is synthesized by the LuxS protein and detected by a periplasmic protein called LuxP. Evidence from a number of laboratories suggests that AI‐2 may be used as a signal by diverse groups of bacteria, and might permit intergeneric signalling. These two families of signalling systems have been studied from the perspectives of physiology, ecology, biochemistry, and more recently, structural biology. Here, we review the biochemistry and structural biology of both acyl‐homoserine‐lactone‐dependent and AI‐2‐dependent signalling systems.

[1]  M. Surette,et al.  The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum‐sensing signal molecule , 2001, Molecular microbiology.

[2]  J. Sturgis,et al.  Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy , 2003, Molecular microbiology.

[3]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[4]  L. Shimkets Intercellular signaling during fruiting-body development of Myxococcus xanthus. , 1999, Annual review of microbiology.

[5]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[6]  D. Pei,et al.  S-Ribosylhomocysteinase (LuxS) is a mononuclear iron protein. , 2003, Biochemistry.

[7]  C. van Delden,et al.  Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[8]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[9]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Iglewski,et al.  Bacterial Quorum Sensing in Pathogenic Relationships , 2000, Infection and Immunity.

[11]  M. Ludwig,et al.  Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Farrand,et al.  Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Lian-Hui Zhang,et al.  Species Bacillus Homoserine Lactonases from-Acyl N Identification of Quorum-Quenching , 2002 .

[14]  M. Houghton,et al.  Heterocyst Pattern Formation Controlled by a Diffusible Peptide , 1998 .

[15]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. M. Dow,et al.  A two‐component system involving an HD‐GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris , 2000, Molecular microbiology.

[17]  M. Newman,et al.  Regulation of the synthesis of cyclic glucan in Xanthomonas campestris by a diffusible signal molecule , 2001, Archives of Microbiology.

[18]  Z Lewandowski,et al.  Biofilms, the customized microniche , 1994, Journal of bacteriology.

[19]  W. Fuqua,et al.  A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite , 1994, Journal of bacteriology.

[20]  P. Seed,et al.  Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[21]  John E. Cronan,et al.  In Vivo Evidence that S-Adenosylmethionine and Fatty Acid Synthesis Intermediates Are the Substrates for the LuxI Family of Autoinducer Synthases , 1998, Journal of bacteriology.

[22]  S. Kjelleberg,et al.  Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. , 2001, FEMS microbiology letters.

[23]  S. C. Winans,et al.  TrlR, a defective TraR‐like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers , 2001, Molecular microbiology.

[24]  Margret I. Moré,et al.  Enzymatic Synthesis of a Quorum-Sensing Autoinducer Through Use of Defined Substrates , 1996, Science.

[25]  John C. Anderson,et al.  Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA , 2002, Nature.

[26]  E. Greenberg,et al.  Analysis of random and site‐directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase , 1997, Molecular microbiology.

[27]  Stephen K. Farrand,et al.  Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction , 1993, Nature.

[28]  B. Bassler,et al.  The languages of bacteria. , 2001, Genes & development.

[29]  G. Dunny,et al.  Cell-cell communication in gram-positive bacteria. , 1997, Annual review of microbiology.

[30]  James J. Valdes,et al.  DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-Stimulated Quorum Sensing inEscherichia coli , 2001, Journal of bacteriology.

[31]  B. Bassler,et al.  Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence , 1993, Molecular microbiology.

[32]  Frank Bernhard,et al.  The autoregulatory role of EsaR, a quorum‐sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function , 2002, Molecular microbiology.

[33]  A. Brooks,et al.  Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment , 2003, Journal of bacteriology.

[34]  Leo Eberl,et al.  Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. , 2002, Microbiology.

[35]  P. Dunlap,et al.  Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri , 1994, Journal of bacteriology.

[36]  M. Schell,et al.  Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum , 1997, Molecular microbiology.

[37]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[38]  S. Diggle,et al.  The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density‐dependency of the quorum sensing hierarchy, regulates rhl‐dependent genes at the onset of stationary phase and can be produced in the absence of LasR , 2003, Molecular microbiology.

[39]  E. Greenberg,et al.  Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi , 1997, Journal of bacteriology.

[40]  Bonnie L Bassler,et al.  LuxS quorum sensing: more than just a numbers game. , 2003, Current opinion in microbiology.

[41]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[42]  S. C. Winans,et al.  A LuxR‐type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes , 2003, Molecular microbiology.

[43]  Lian-Hui Zhang,et al.  A bacterial cell–cell communication signal with cross‐kingdom structural analogues , 2003, Molecular microbiology.

[44]  E. P. Greenberg,et al.  Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus , 2000, Journal of bacteriology.

[45]  Y. Dong,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Rice,et al.  The 1.2 A structure of a novel quorum-sensing protein, Bacillus subtilis LuxS. , 2001, Journal of molecular biology.

[47]  E. Greenberg,et al.  Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. , 1999, Methods in enzymology.

[48]  E. P. Greenberg,et al.  Conversion of the Vibrio fischeriTranscriptional Activator, LuxR, to a Repressor , 2000, Journal of bacteriology.

[49]  S. Kjelleberg,et al.  Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. , 1999, Microbiology.

[50]  M Welch,et al.  N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia , 2000, The EMBO journal.

[51]  P. Williams,et al.  Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria , 1999, Nature Biotechnology.

[52]  P. Stewart,et al.  Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide , 1999, Molecular microbiology.

[53]  D. Ohman,et al.  Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family , 1995, Journal of bacteriology.

[54]  K. M. Lee,et al.  QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Young Ran Kim,et al.  Regulation of Vibrio vulnificus virulence by the LuxS quorum‐sensing system , 2003, Molecular microbiology.

[56]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Kjelleberg,et al.  Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. , 2002, Microbiology.

[58]  W. D. Bauer,et al.  Disruption of bacterial quorum sensing by other organisms. , 2002, Current opinion in biotechnology.

[59]  M. Gao,et al.  Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium , 2003, Archives of Microbiology.

[60]  B. Bassler,et al.  Mob Psychology , 1910, The Hospital.

[61]  B. Bassler,et al.  Sequence and Function of LuxU: a Two-Component Phosphorelay Protein That Regulates Quorum Sensing inVibrio harveyi , 1999, Journal of bacteriology.

[62]  M. Schell,et al.  Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester , 1997, Journal of bacteriology.

[63]  R. Cortese,et al.  The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA , 2002, The EMBO journal.

[64]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[65]  S. Horinouchi,et al.  Signalling early developmental events in two highly diverged Streptomyces species , 2003, Molecular microbiology.

[66]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[67]  Kim R Hardie,et al.  LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. , 2002, Microbiology.

[68]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Ho-Sung Yoon,et al.  Heterocyst development in Anabaena. , 2003, Current opinion in microbiology.

[70]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[71]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[72]  M. Surette,et al.  Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[73]  K. Poole,et al.  Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.

[74]  A. Poplawsky,et al.  pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris , 1997, Journal of bacteriology.

[75]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[76]  B. Bassler,et al.  Evidence for a Signaling System inHelicobacter pylori: Detection of aluxS-Encoded Autoinducer , 2000, Journal of bacteriology.

[77]  S. Kjelleberg,et al.  How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. , 2000, Microbiology.

[78]  Yinping Qin,et al.  Quorum‐sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm , 2000, The EMBO journal.

[79]  K. Winzer,et al.  Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch! , 2002, Current opinion in microbiology.

[80]  Jun Zhu,et al.  The Bases of Crown Gall Tumorigenesis , 2000, Journal of bacteriology.

[81]  J. Garey,et al.  The evolution of bacterial LuxI and LuxR quorum sensing regulators. , 2001, Microbiology.

[82]  M. Manefield,et al.  Quorum sensing in context: out of molecular biology and into microbial ecology. , 2002, Microbiology.

[83]  B. Bassler How bacteria talk to each other: regulation of gene expression by quorum sensing. , 1999, Current opinion in microbiology.

[84]  E. P. Greenberg,et al.  Reversible Acyl-Homoserine Lactone Binding to Purified Vibrio fischeri LuxR Protein , 2004, Journal of bacteriology.

[85]  J. M. Sauder,et al.  A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs. , 2001, Structure.

[86]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[87]  M. Silverman,et al.  Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. , 1987, Nucleic acids research.

[88]  S. C. Winans,et al.  Site‐directed mutagenesis of a LuxR‐type quorum‐sensing transcription factor: alteration of autoinducer specificity , 2003, Molecular microbiology.

[89]  M. Churchill,et al.  Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. , 2002, Molecular cell.

[90]  Lian-Hui Zhang,et al.  Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase , 2001, Nature.

[91]  J. M. Dow,et al.  Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  E. Meighen,et al.  Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. , 1989, The Journal of biological chemistry.

[93]  E. Greenberg,et al.  Acyl homoserine-lactone quorum-sensing signal generation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[94]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[95]  A. Maurelli,et al.  Shigella flexneri LuxS Quorum-Sensing System Modulates virB Expression but Is Not Essential for Virulence , 2001, Infection and Immunity.

[96]  J. Stein,et al.  Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes , 2001, Molecular microbiology.

[97]  E. Greenberg,et al.  Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase , 1997, Journal of bacteriology.

[98]  A. Kirkham,et al.  Pseudomonas aeruginosa Quorum-Sensing Systems May Control Virulence Factor Expression in the Lungs of Patients with Cystic Fibrosis , 2002, Infection and Immunity.

[99]  S. C. Winans Bacterial Esperanto , 2002, Nature Structural Biology.

[100]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[101]  P. Dunlap,et al.  Acylhomoserine Lactone Synthase Activity of the Vibrio fischeri AinS Protein , 1999, Journal of bacteriology.

[102]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[103]  K. Juárez,et al.  Mechanism of Pseudomonas aeruginosa RhlR Transcriptional Regulation of the rhlAB Promoter , 2003, Journal of bacteriology.

[104]  P. Reeves,et al.  The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. , 1993, The EMBO journal.

[105]  B. Bassler,et al.  Lsr‐mediated transport and processing of AI‐2 in Salmonella typhimurium , 2003, Molecular microbiology.

[106]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[107]  S. C. Winans,et al.  Activity of the quorum‐sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR‐like protein , 1998, Molecular microbiology.

[108]  B. Bassler,et al.  Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi , 1994, Molecular microbiology.

[109]  Lotte Søgaard-Andersen,et al.  Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus , 2003, Molecular microbiology.

[110]  M. Urbanowski,et al.  The Quorum Sensing Negative Regulators EsaR and ExpREcc, Homologues within the LuxR Family, Retain the Ability To Function as Activators of Transcription , 2003, Journal of bacteriology.

[111]  F. Wisniewski-Dyé,et al.  The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum‐sensing loci , 2000, Molecular microbiology.

[112]  Ned S Wingreen,et al.  Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression , 2003, The EMBO journal.

[113]  B. Bassler,et al.  The LuxS‐dependent autoinducer AI‐2 controls the expression of an ABC transporter that functions in AI‐2 uptake in Salmonella typhimurium , 2001, Molecular microbiology.

[114]  Michael R. Sawaya,et al.  Dimerization allows DNA target site recognition by the NarL response regulator , 2002, Nature Structural Biology.

[115]  Whasun O. Chung,et al.  Signaling System in Porphyromonas gingivalis Based on a LuxS Protein , 2001, Journal of bacteriology.

[116]  V. Sperandio,et al.  Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.