Mining Web data to create online navigation recommendations

A system to provide online navigation recommendation for Web visitors is introduced. We call visitor the anonymous user, i.e., when only data about her/his browsing behavior (Web logs) are available. We first apply clustering techniques over a large sample of Web data. Next, from the significant patterns that are discovered, a set of rules about how to use them is created. Finally, comparing the current Web visitor session with the patterns, online navigation recommendations are proposed using the mentioned rules. The system was tested using data from a real Web site, showing its effectiveness.

[1]  Marco Cadoli,et al.  A Survey on Knowledge Compilation , 1997, AI Commun..

[2]  Sankar K. Pal,et al.  Web mining in soft computing framework: relevance, state of the art and future directions , 2002, IEEE Trans. Neural Networks.

[3]  James A. M. McHugh,et al.  Mining the World Wide Web , 2001, The Information Retrieval Series.

[4]  Terumasa Aoki,et al.  A methodology to find Web site keywords , 2004, IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004.

[5]  Yanyi. Yang,et al.  Knowledge discovery and data mining in databases , 2002 .

[6]  Jaideep Srivastava,et al.  Creating adaptive Web sites through usage-based clustering of URLs , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).

[7]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[8]  G. C. Gupta WEB INTELLIGENCE , 2004 .

[9]  Myra Spiliopoulou,et al.  Data Mining for the Web , 1999, PKDD.

[10]  Anupam Joshi,et al.  On Mining Web Access Logs , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[11]  Terumasa Aoki,et al.  Web Site Structure and Content Recommendations , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[12]  Ralf Walther,et al.  The Data Webhouse Toolkit , 2001, Künstliche Intell..

[13]  Terumasa Aoki,et al.  Using Self Organizing Feature Maps to Acquire Knowledge about Visitor Behavior in a Web Site , 2003, KES.

[14]  Drakoulis Martakos,et al.  The process of personalizing web content : techniques , workflow and evaluation , 2002 .

[15]  Myra Spiliopoulou,et al.  Analysis of navigation behaviour in web sites integrating multiple information systems , 2000, The VLDB Journal.

[16]  Terumasa Aoki,et al.  A New Similarity Measure to Understand Visitor Behavior in a Web Site , 2004, IEICE Trans. Inf. Syst..

[17]  Jakob Nielsen,et al.  User interface directions for the Web , 1999, CACM.

[18]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[19]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[20]  Thomas A. Runkler,et al.  Web mining with relational clustering , 2003, Int. J. Approx. Reason..

[21]  Tao Luo,et al.  Integrating Web Usage and Content Mining for More Effective Personalization , 2000, EC-Web.

[22]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.