Adaptation and Hybridization in Nature-Inspired Algorithms

The aim of this chapter is to familiarize readers with the basics of adaptation and hybridization in nature-inspired algorithms as necessary for understanding the main contents of this book. Adaptation is a metaphor for flexible autonomous systems that respond to external changing factors (mostly environmental) by adapting their well-established behavior. Adaptation emerges in practically all areas of human activities as well. Such adaptation mechanisms can be used as a general problem-solving approach, though it may suffer from a lack of problem-specific knowledge. To solve specific problems with additional improvements of possible performance, hybridization can be used in order to incorporate a problem-specific knowledge from a problem domain. In order to discuss relevant issues as general as possible, the classification of problems is identified at first. Additionally, we focus on the biological foundations of adaptation that constitute the basis for the formulation of nature-inspired algorithms. This book highlights three types of inspirations from nature: the human brain, Darwinian natural selection, and the behavior of social living insects (e.g., ants, bees, etc.) and animals (e.g., swarm of birds, shoals of fish, etc.), which influence the development of artificial neural networks. evolutionary algorithms, and swarm intelligence, respectively. The mentioned algorithms that can be placed under the umbrella of computational intelligence are described from the viewpoint of adaptation and hybridization so as to show that these mechanisms are simple to develop and yet very efficient. Finally, a brief review of recent developed applications is presented.

[1]  Giovanni Iacca,et al.  Ockham's Razor in memetic computing: Three stage optimal memetic exploration , 2012, Inf. Sci..

[2]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[3]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[4]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[5]  Xi-Huai Wang,et al.  Hybrid particle swarm optimization with simulated annealing , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[6]  Efstratios F. Georgopoulos,et al.  Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization , 2013, Eur. J. Oper. Res..

[7]  K. Chandrasekaran,et al.  Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm , 2012, Swarm Evol. Comput..

[8]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[9]  Junjie Li,et al.  Structural inverse analysis by hybrid simplex artificial bee colony algorithms , 2009 .

[10]  Iztok Fister,et al.  Firefly Algorithm: A Brief Review of the Expanding Literature , 2014 .

[11]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Anupam Shukla,et al.  Modular symbiotic adaptive neuro evolution for high dimensionality classificatory problems , 2011, Intell. Decis. Technol..

[14]  Xiao-Feng Xie,et al.  DEPSO: hybrid particle swarm with differential evolution operator , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[15]  Gul Muhammad Khan,et al.  Evolution of neural networks using Cartesian Genetic Programming , 2010, IEEE Congress on Evolutionary Computation.

[16]  Sinem Kulluk,et al.  A novel hybrid algorithm combining hunting search with harmony search algorithm for training neural networks , 2013, J. Oper. Res. Soc..

[17]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[20]  Jarmo T. Alander,et al.  An Indexed Bibliography of Genetic Algorithms and Neural Networks , 2012 .

[21]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[22]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[23]  Madhumita Panda,et al.  A Hybrid Differential Evolution and Back-Propagation Algorithm for Feedforward Neural Network Training , 2013 .

[24]  Jianzhong Zhou,et al.  An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems , 2012 .

[25]  Peter R. Grant,et al.  Adaptive Radiation of Darwin's Finches , 2002, American Scientist.

[26]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[27]  Iztok Fister,et al.  Memetic firefly algorithm for combinatorial optimization , 2012, 1204.5165.

[28]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[29]  Abdesslem Layeb,et al.  A novel quantum inspired cuckoo search for knapsack problems , 2011, Int. J. Bio Inspired Comput..

[30]  Victor O. K. Li,et al.  Evolutionary artificial neural network based on Chemical Reaction Optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[31]  Darren M. Chitty,et al.  A Hybrid Ant Colony Optimisation Technique for Dynamic Vehicle Routing , 2004, GECCO.

[32]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[33]  Xin-She Yang,et al.  A framework for self-tuning optimization algorithm , 2013, Neural Computing and Applications.

[34]  Moonis Ali,et al.  Innovations in Applied Artificial Intelligence , 2005 .

[35]  Minghao Yin,et al.  A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem , 2013 .

[36]  Hai-Bin Duan,et al.  A Hybrid Artificial Bee Colony Optimization and Quantum Evolutionary Algorithm for Continuous Optimization Problems , 2010, Int. J. Neural Syst..

[37]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[38]  Xin Yao,et al.  Self-adaptive differential evolution with neighborhood search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[39]  Siti Zaiton Mohd Hashim,et al.  Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm , 2012, Appl. Math. Comput..

[40]  Shuhao Yu,et al.  Self-Adaptive Step Firefly Algorithm , 2013, J. Appl. Math..

[41]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[42]  Yudong Zhang,et al.  Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization , 2011, Sensors.

[43]  María Pérez-Ortiz,et al.  Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem , 2013, Soft Comput..

[44]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[45]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[46]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[47]  Pedro Antonio Gutiérrez,et al.  Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology , 2011, Appl. Soft Comput..

[48]  L. Booker Perspectives on adaptation in natural and artificial systems , 2004 .

[49]  Dong Zhou,et al.  Translation techniques in cross-language information retrieval , 2012, CSUR.

[50]  Yongquan Zhou,et al.  A Hybrid Bat Algorithm with Path Relinking for the Capacitated Vehicle Routing Problem , 2013 .

[51]  Pratyusha Rakshit,et al.  Adaptive Firefly Algorithm for nonholonomic motion planning of car-like system , 2013, 2013 IEEE Congress on Evolutionary Computation.

[52]  Esmaeil Hadavandi,et al.  Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction , 2012, Knowl. Based Syst..

[53]  Thomas P. Caudell,et al.  Parametric Connectivity: Training of Constrained Networks using Genetic Algorithms , 1989, ICGA.

[54]  Jakub M. Tomczak,et al.  Advances in Systems Science , 2014 .

[55]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[56]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[57]  Matteo Matteucci,et al.  ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies , 2006 .

[58]  Chin-Teng Lin,et al.  Training neural networks via simplified hybrid algorithm mixing Nelder–Mead and particle swarm optimization methods , 2015, Soft Comput..

[59]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[60]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[61]  Sugata Sanyal,et al.  Training artificial neural networks using APPM , 2012, Int. J. Wirel. Mob. Comput..

[62]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[63]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[64]  Pedro Larrañaga,et al.  GA-EDA: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms , 2004 .

[65]  S. Blackmore The Meme Machine , 1999 .

[66]  Iztok Fister,et al.  Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm , 2013, Comput. Optim. Appl..

[67]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[68]  Yamina Mohamed Ben Ali Evolving multilayer feedforward neural network using adaptive particle swarm algorithm , 2011, Int. J. Hybrid Intell. Syst..

[69]  Silvia Curteanu,et al.  Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic , 2012, Appl. Soft Comput..

[70]  Wilfried Jakob,et al.  A general cost-benefit-based adaptation framework for multimeme algorithms , 2010, Memetic Comput..

[71]  Shuangquan Liu,et al.  An Improved Self-Adaptive Particle Swarm Optimization Approach for Short-Term Scheduling of Hydro System , 2009, 2009 International Asia Conference on Informatics in Control, Automation and Robotics.

[72]  Gai-Ge Wang,et al.  An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization , 2013, TheScientificWorldJournal.

[73]  Adam Slowik,et al.  Application of an Adaptive Differential Evolution Algorithm With Multiple Trial Vectors to Artificial Neural Network Training , 2011, IEEE Transactions on Industrial Electronics.

[74]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[75]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[76]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[77]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[78]  A. H. Navin,et al.  Forecasting stock prices using a hybrid Artificial Bee Colony based neural network , 2012, 2012 International Conference on Innovation Management and Technology Research.

[79]  Julian Francis Miller,et al.  Cartesian genetic programming encoded artificial neural networks: a comparison using three benchmarks , 2013, GECCO '13.

[80]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[81]  Ajith Abraham,et al.  Agent based adaptive firefly back-propagation neural network training method for dynamic systems , 2012, 2012 12th International Conference on Hybrid Intelligent Systems (HIS).

[82]  Gul Muhammad Khan,et al.  Fast learning neural networks using Cartesian genetic programming , 2013, Neurocomputing.

[83]  Changhe Li,et al.  A Self-Learning Particle Swarm Optimizer for Global Optimization Problems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[84]  Iztok Fister,et al.  A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry , 2010, Appl. Soft Comput..

[85]  Cristian S. Calude,et al.  Unconventional Computation and Natural Computation , 2015, Lecture Notes in Computer Science.

[86]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[87]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[88]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[89]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[90]  Averill Law Simulation Modeling and Analysis with Expertfit Software , 2006 .

[91]  David L. Applegate,et al.  The traveling salesman problem , 2006 .

[92]  Andrés Iglesias,et al.  New memetic self-adaptive firefly algorithm for continuous optimisation , 2016 .

[93]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[94]  Janez Brest,et al.  Memetic artificial bee colony algorithm for large-scale global optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[95]  Zixing Cai,et al.  Cooperative Coevolutionary Adaptive Genetic Algorithm in Path Planning of Cooperative Multi-Mobile Robot Systems , 2002, J. Intell. Robotic Syst..

[96]  Xiaohui Yan,et al.  A new approach for data clustering using hybrid artificial bee colony algorithm , 2012, Neurocomputing.

[97]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[98]  Gaige Wang,et al.  A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization , 2013, J. Appl. Math..

[99]  A. K. Rigler,et al.  Accelerating the convergence of the back-propagation method , 1988, Biological Cybernetics.

[100]  Nazri Mohd Nawi,et al.  A New Bat Based Back-Propagation (BAT-BP) Algorithm , 2013, ICSS.

[101]  Teresa Bernarda Ludermir,et al.  Evolving Artificial Neural Networks Using Adaptive Differential Evolution , 2010, IBERAMIA.

[102]  Chao Wu,et al.  Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm , 2011, Knowl. Based Syst..

[103]  Roman Neruda,et al.  Parameter genetic learning of perceptron networks , 2006 .

[104]  Dipankar Dasgupta,et al.  Information processing in the immune system , 1999 .

[105]  Simon Fong,et al.  A Novel Hybrid Self-Adaptive Bat Algorithm , 2014, TheScientificWorldJournal.

[106]  F. Pettersson,et al.  Hybrid ant colony optimization and visibility studies applied to a job-shop scheduling problem , 2007, Appl. Math. Comput..

[107]  Mansooreh Mollaghasemi,et al.  An adaptive multiobjective evolutionary approach to optimize artmap neural networks , 2008 .

[108]  Jemal H. Abawajy,et al.  Proceedings of the First International Conference on Advanced Data and Information Engineering, DaEng 2013, Kuala Lumpur, Malaysia, December 16-18, 2013 , 2014, DaEng.

[109]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning Through Evolving Neural Network Topologies , 2002, GECCO.

[110]  Jinyu Wen,et al.  Optimal reactive power dispatch using an adaptive genetic algorithm , 1997 .

[111]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[112]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[113]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[114]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..

[115]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[116]  Ming-Huwi Horng,et al.  Firefly Meta-Heuristic Algorithm for Training the Radial Basis Function Network for Data Classification and Disease Diagnosis , 2012 .

[117]  Ali Safa Sadiq,et al.  Magnetic Optimization Algorithm for training Multi Layer Perceptron , 2011, 2011 IEEE 3rd International Conference on Communication Software and Networks.

[118]  Jacek M. Zurada,et al.  Swarm and Evolutionary Computation , 2012, Lecture Notes in Computer Science.

[119]  Zbigniew Michalewicz,et al.  Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.

[120]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[121]  Janez Brest,et al.  A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring , 2012, ICAISC.

[122]  S. Ulam John von Neumann 1903-1957 , 1958 .

[123]  Garrett Birkhoff Von Neumann and lattice theory , 1958 .

[124]  Zouhair Guennoun,et al.  EVOLUTIONARY NEURAL NETWORKS ALGORITHM FOR THE DYNAMIC FREQUENCY ASSIGNMENT PROBLEM , 2011 .

[125]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[126]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[127]  Francisco Herrera,et al.  A memetic algorithm for evolutionary prototype selection: A scaling up approach , 2008, Pattern Recognit..

[128]  Christian Blum,et al.  Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs , 2010, Swarm Intelligence.

[129]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[130]  Taher Niknam,et al.  An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration , 2009 .

[131]  Haidar Samet,et al.  A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting , 2014, Expert Syst. Appl..

[132]  Ferrante Neri,et al.  Diversity Management in Memetic Algorithms , 2012, Handbook of Memetic Algorithms.

[133]  Iztok Fister,et al.  A comprehensive review of cuckoo search: variants and hybrids , 2013, Int. J. Math. Model. Numer. Optimisation.

[134]  Rozaida Ghazali,et al.  Using Artificial Bee Colony Algorithm for MLP Training on Earthquake Time Series Data Prediction , 2011, ArXiv.

[135]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[136]  Ruppa K. Thulasiram,et al.  HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad hoc network , 2009, Ad Hoc Networks.

[137]  Martin Mandischer,et al.  Representation and Evolution of Neural Networks , 1993 .

[138]  Guillermo Ricardo Simari,et al.  Advances in Artificial Intelligence – IBERAMIA 2010 , 2010, Lecture Notes in Computer Science.

[139]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[140]  Judy Strauss,et al.  E-marketing 7th Ed. , 2014 .

[141]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[142]  Nor Ashidi Mat Isa,et al.  Adaptive Evolutionary Artificial Neural Networks for Pattern Classification , 2011, IEEE Transactions on Neural Networks.

[143]  Andries Petrus Engelbrecht,et al.  The Self-adaptive Comprehensive Learning Particle Swarm Optimizer , 2012, ANTS.

[144]  F. Grimaccia,et al.  Genetical Swarm Optimization: Self-Adaptive Hybrid Evolutionary Algorithm for Electromagnetics , 2007, IEEE Transactions on Antennas and Propagation.

[145]  Omid Bozorg Haddad,et al.  Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization , 2006 .

[146]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[147]  Wei Gao Financial Data Forecasting by Evolutionary Neural Network Based on Ant Colony Algorithm , 2011, AICI.

[148]  Gerald Sommer,et al.  Efficient reinforcement learning through Evolutionary Acquisition of Neural Topologies , 2005, ESANN.

[149]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[150]  Marcin Suchorzewski,et al.  Evolving scalable and modular adaptive networks with Developmental Symbolic Encoding , 2011, Evol. Intell..

[151]  Juan Humberto Sossa Azuela,et al.  Design of artificial neural networks using a modified Particle Swarm Optimization algorithm , 2009, 2009 International Joint Conference on Neural Networks.

[152]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[153]  Michael R. Lyu,et al.  A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training , 2007, Appl. Math. Comput..

[154]  Maria del Carmen Pegalajar Jiménez,et al.  Evolutionaty training for dynamical recurrent neural networks: an application in finantial time series prediction , 2006 .

[155]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[156]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[157]  E. Dilettoso,et al.  A self-adaptive niching genetic algorithm for multimodal optimization of electromagnetic devices , 2006, IEEE Transactions on Magnetics.

[158]  J. Searle The Rediscovery of the Mind , 1992 .

[159]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[160]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[161]  H. Duan,et al.  Hybrid Ant Colony Optimization Using Memetic Algorithm for Traveling Salesman Problem , 2007, 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.

[162]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[163]  Xueming Ding,et al.  A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization , 2011, Eng. Appl. Artif. Intell..

[164]  Germán Terrazas,et al.  Nature Inspired Cooperative Strategies for Optimization, NICSO 2010, May 12-14, 2010, Granada, Spain , 2012, NISCO.

[165]  Iztok Fister,et al.  A hybrid bat algorithm , 2013, ArXiv.

[166]  Magdalene Marinaki,et al.  A Hybrid Multi-Swarm Particle Swarm Optimization algorithm for the Probabilistic Traveling Salesman Problem , 2010, Comput. Oper. Res..

[167]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[168]  Wen Yi Lin,et al.  A GA–DE hybrid evolutionary algorithm for path synthesis of four-bar linkage , 2010 .

[169]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[170]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[171]  Sebastian Risi,et al.  Enhancing es-hyperneat to evolve more complex regular neural networks , 2011, GECCO '11.

[172]  Dong-Sheng Jeng,et al.  Self-evolving Neural Networks Based On PSO and JPSO Algorithms , 2012 .

[173]  Janez Brest,et al.  Modified firefly algorithm using quaternion representation , 2013, Expert Syst. Appl..

[174]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[175]  Nazri Mohd Nawi,et al.  CSBPRNN: A New Hybridization Technique Using Cuckoo Search to Train Back Propagation Recurrent Neural Network , 2013, DaEng.

[176]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.