Non-Existence of Linear Perfect Lee Codes With Radius 2 for Infinitely Many Dimensions

The Golomb-Welch conjecture (1968) on the non-existence of perfect Lee codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}^{n}$ </tex-math></inline-formula> with radius <inline-formula> <tex-math notation="LaTeX">$e\geq 2$ </tex-math></inline-formula> and dimensions <inline-formula> <tex-math notation="LaTeX">$n\geq 3$ </tex-math></inline-formula>, widely believed to be true, has been up to now only proved for large radius in any dimension, for small dimensions, and for some small radii and specific <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>. The main result of this paper is that for radius <inline-formula> <tex-math notation="LaTeX">$e = 2$ </tex-math></inline-formula>, there are no perfect Lee linear codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}^{n}$ </tex-math></inline-formula> for infinitely many values of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>.

[1]  Peter Horák,et al.  Tiling R5 by Crosses , 2014, Discret. Comput. Geom..

[2]  K. Wiertelak On the density of some sets of primes, II , 1978 .

[3]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[4]  Peter Horák,et al.  A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..

[5]  T. Apostol Introduction to analytic number theory , 1976 .

[6]  K. Wiertelak On the density of some sets of primes, II , 1978 .

[7]  Tao Zhang,et al.  Perfect and Quasi-Perfect Codes Under the $l_{p}$ Metric , 2017, IEEE Transactions on Information Theory.

[8]  Bella Bose,et al.  Quasi-perfect Lee distance codes , 2003, IEEE Trans. Inf. Theory.

[9]  Simon Špacapan,et al.  Nonexistence of face-to-face four-dimensional tilings in the Lee metric , 2007, Eur. J. Comb..

[10]  C. Y. Lee,et al.  Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.

[11]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[12]  Sylvain Gravier,et al.  On the Non-existence of 3-Dimensional Tiling in the Lee Metric , 1998, Eur. J. Comb..

[13]  Sueli I. Rodrigues Costa,et al.  Codes and lattices in the lp metric , 2014, 2014 Information Theory and Applications Workshop (ITA).

[14]  Mario Szegedy,et al.  Algorithms to tile the infinite grid with finite clusters , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Karel A. Post Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..

[16]  Peter Horák,et al.  Non-periodic Tilings of ℝn by Crosses , 2012, Discret. Comput. Geom..

[17]  Paul H. Siegel,et al.  Lee-metric BCH codes and their application to constrained and partial-response channels , 1994, IEEE Trans. Inf. Theory.

[18]  Olof Heden,et al.  A survey of perfect codes , 2008, Adv. Math. Commun..

[19]  Peter Horák,et al.  Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.

[20]  P. Horak On perfect Lee codes , 2009, Discret. Math..

[21]  S. Golomb Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .

[22]  P. Horak Tilings in Lee metric , 2009, Eur. J. Comb..

[23]  Timo Lepistö A Modification of the Elias-Bound and Nontexistence Theorems for Perfect Codes in the Lee-Metric , 1981, Inf. Control..

[24]  Dongryul Kim Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions , 2017, Eur. J. Comb..

[25]  David A. Cox Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication , 1989 .

[26]  Arya Mazumdar,et al.  Codes in Permutations and Error Correction for Rank Modulation , 2009, IEEE Transactions on Information Theory.