Inertial Parameter Identification in Robotics: A Survey

This work aims at reviewing, analyzing and comparing a range of state-of-the-art approaches to inertial parameter identification in the context of robotics. We introduce “BIRDy (Benchmark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic and formal performance assessment of the considered identification algorithms on either simulated or real serial robot manipulators. Seventeen of the most widely used approaches found in the scientific literature are implemented and compared to each other, namely: the Inverse Dynamic Identification Model with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS, -IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method; the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Output Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification pipeline, from the generation of symbolic kinematic and dynamic models to the identification process itself. This includes functionalities for excitation trajectory computation as well as the collection and pre-processing of experiment data. In this work, the proposed methods are first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF TX40 and RV2SQ industrial manipulators, before being tested on the real robot platforms. The robustness, precision, computational efficiency and context of application the different methods are investigated and discussed.

[1]  Pierre-Olivier Vandanjon,et al.  DYNAMIC IDENTIFICATION OF A VIBRATORY ASPHALT COMPACTOR FOR CONTACT EFFORTS ESTIMATION , 2006 .

[2]  Giuseppe Carlo Calafiore,et al.  Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation , 2001 .

[3]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[4]  M. Indri,et al.  Friction Compensation in Robotics: an Overview , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  Jan Swevers,et al.  Maximum Likelihood Identification of a Dynamic Robot Model: Implementation Issues , 2002, Int. J. Robotics Res..

[6]  Alexandre Janot,et al.  An automated instrumental variable method for rigid industrial robot identification , 2018 .

[7]  Eiichi Yoshida,et al.  Identification of dynamics of humanoids: Systematic exciting motion generation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Frank C. Park,et al.  A Geometric Algorithm for Robust Multibody Inertial Parameter Identification , 2018, IEEE Robotics and Automation Letters.

[9]  Hugues Garnier,et al.  Comparison between the IDIM-IV method and the DIDIM method for industrial robots identification , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[10]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[11]  Jingfu Jin,et al.  Parameter identification for industrial robots with a fast and robust trajectory design approach , 2015 .

[12]  Maxime Gautier,et al.  Global Identification of Joint Drive Gains and Dynamic Parameters of Robots , 2014 .

[13]  Naresh K. Sinha,et al.  Identification of Continuous-Time Systems Using Instrumental Variables with Application to an Industrial Robot , 1986, IEEE Transactions on Industrial Electronics.

[14]  Daniel E. Rivera,et al.  System identification: A Wiener-Hammerstein benchmark , 2012 .

[15]  Koji Yoshida,et al.  Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters , 2000, Int. J. Robotics Res..

[16]  Mathieu Brunot Identification of rigid industrial robots - A system identification perspective , 2017 .

[17]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[18]  Henrik Gordon Petersen,et al.  A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..

[19]  Maxime Gautier,et al.  Using robust regressions and residual analysis to verify the reliability of LS estimation: Application in robotics , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[21]  Marimuthu Palaniswami,et al.  Neural techniques for combinatorial optimization with applications , 1998, IEEE Trans. Neural Networks.

[22]  Ioan Doré Landau,et al.  An output error recursive algorithm for unbiased identification in closed loop , 1996, Autom..

[23]  Austin Wang,et al.  Encoding Physical Constraints in Differentiable Newton-Euler Algorithm , 2020, L4DC.

[24]  Martin L. Felis RBDL: an efficient rigid-body dynamics library using recursive algorithms , 2017, Auton. Robots.

[25]  Ginalber Luiz de Oliveira Serra Kalman Filters - Theory for Advanced Applications , 2018 .

[26]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[27]  Yohannes Kassahun,et al.  Experimental Robot Inverse Dynamics Identification Using Classical and Machine Learning Techniques , 2016 .

[28]  Sébastien Briot,et al.  Global identification of drive gains parameters of robots using a known payload , 2012, 2012 IEEE International Conference on Robotics and Automation.

[29]  Chao Liu,et al.  An Iterative Approach for Accurate Dynamic Model Identification of Industrial Robots , 2020, IEEE Transactions on Robotics.

[30]  A.S. Paul,et al.  Dual Kalman filters for autonomous terrain aided navigation in unknown environments , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[31]  Gentiane Venture,et al.  Modeling and Identification of Passenger Car Dynamics Using Robotics Formalism , 2006, IEEE Transactions on Intelligent Transportation Systems.

[32]  Maxime Gautier,et al.  A revised Durbin-Wu-Hausman test for industrial robot identification , 2016 .

[33]  Pasquale Chiacchio,et al.  A systematic procedure for the identification of dynamic parameters of robot manipulators , 1999, Robotica.

[34]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[35]  Koji Yoshida,et al.  Experimental Study Of The Identification Methods For An Industrial Robot Manipulator , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Rudolph van der Merwe,et al.  Dual Estimation and the Unscented Transformation , 1999, NIPS.

[37]  Claudio Urrea,et al.  Parameter identification methods for real redundant manipulators , 2017 .

[38]  Fengfeng Xi Effect of non-geometric errors on manipulator inertial calibration , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[39]  E. Monmasson,et al.  Parameters Estimation of the Actuator used in Haptic Interfaces: Comparison of two Identification Methods , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[40]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[41]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[42]  Seyed Mahdi Hashemi,et al.  Parameter identification of a robot arm using separable least squares technique , 2009, 2009 European Control Conference (ECC).

[43]  Philippe Lemoine,et al.  OpenSYMORO: An open-source software package for symbolic modelling of robots , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[44]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[45]  Torsten Söderström,et al.  On instrumental variable and total least squares approaches for identification of noisy systems , 2002 .

[46]  Frank Chongwoo Park,et al.  A Natural Adaptive Control Law for Robot Manipulators , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[47]  Manuel Beschi,et al.  A general analytical procedure for robot dynamic model reduction , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[48]  Miguel Díaz-Rodríguez,et al.  Comparison of trajectory parametrization methods with statistical analysis for dynamic parameter identification of serial robot , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[49]  J. R. Trapero,et al.  Recursive Estimation and Time-Series Analysis. An Introduction for the Student and Practitioner, Second edition, Peter C. Young. Springer (2011), 504 pp., Hardcover, $119.00, ISBN: 978-3-642-21980-1 , 2015 .

[50]  I. Markovsky,et al.  A Recursive Restricted Total Least-Squares Algorithm , 2014, IEEE Transactions on Signal Processing.

[51]  Bruno Siciliano,et al.  Lagrange and Newton-Euler dynamic modeling of a gear-driven robot manipulator with inclusion of motor inertia effects , 1995, Adv. Robotics.

[52]  Eiichi Yoshida,et al.  Generating persistently exciting trajectory based on condition number optimization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[53]  J. De Schutter,et al.  Dynamic Model Identification for Industrial Robots , 2007, IEEE Control Systems.

[54]  Alessandro De Luca,et al.  Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[55]  Wisama Khalil,et al.  SYMORO+: A system for the symbolic modelling of robots , 1997, Robotica.

[56]  Bruce W. Suter Multirate and Wavelet Signal Processing , 1997 .

[57]  Adrien Escande,et al.  Identification of fully physical consistent inertial parameters using optimization on manifolds , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[58]  Identification of dynamic robot’s parameters using physics-based simulation models for improving accuracy , 2021 .

[59]  Sabine Van Huffel,et al.  Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models , 1989 .

[60]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[61]  Alexandre Janot,et al.  Output Error Methods for Robot Identification , 2019, Journal of Dynamic Systems, Measurement, and Control.

[62]  Dana Kulic,et al.  Constrained dynamic parameter estimation using the Extended Kalman Filter , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[63]  Gonzalo Joya,et al.  Parametric identification of robotic systems with stable time-varying Hopfield networks , 2004 .

[64]  Eiichi Yoshida,et al.  Humanoid and Human Inertia Parameter Identification Using Hierarchical Optimization , 2016, IEEE Transactions on Robotics.

[65]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[66]  Vicente Mata,et al.  Dynamic parameter identification in industrial robots considering physical feasibility , 2005, Adv. Robotics.

[67]  Olav Reiersol,et al.  Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .

[68]  Maxime Gautier,et al.  A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics , 2010, IEEE Transactions on Control Systems Technology.

[69]  Maxime Gautier Dynamic identification of robots with power model , 1997, Proceedings of International Conference on Robotics and Automation.

[70]  Patrick M. Wensing,et al.  Sequential semidefinite optimization for physically and statistically consistent robot identification , 2021 .

[71]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[72]  Jean-Jacques E. Slotine,et al.  Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution , 2017, IEEE Robotics and Automation Letters.

[73]  Gentiane Venture,et al.  Identification of consistent standard dynamic parameters of industrial robots , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[74]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[75]  Jörn Malzahn,et al.  FloBaRoID - A Software Package for the Identification of Robot Dynamics Parameters , 2017, RAAD.

[76]  Rui Cortesão,et al.  Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approach , 2019, IEEE/ASME Transactions on Mechatronics.

[77]  Maxime Gautier,et al.  Dynamic identification of a 6 dof robot without joint position data , 2011, 2011 IEEE International Conference on Robotics and Automation.

[78]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[79]  Maxime Gautier,et al.  A Generic Instrumental Variable Approach for Industrial Robot Identification , 2014, IEEE Transactions on Control Systems Technology.

[80]  Patrick M. Wensing,et al.  Geometric Robot Dynamic Identification: A Convex Programming Approach , 2020, IEEE Transactions on Robotics.

[81]  Maxime Gautier,et al.  Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data , 2014 .

[82]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[83]  Sabine Van Huffel,et al.  The total least squares problem , 1993 .

[84]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[85]  Andreas Kroll,et al.  Benchmark problems for nonlinear system identification and control using Soft Computing methods: Need and overview , 2014, Appl. Soft Comput..

[86]  S. Abe Theories on the Hopfield neural networks , 1989, International 1989 Joint Conference on Neural Networks.

[87]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[88]  P. Poignet,et al.  Robust dynamic experimental identification of robots with set membership uncertainty , 2005, IEEE/ASME Transactions on Mechatronics.

[89]  Eiichi Yoshida,et al.  Identification of the inertial parameters of a humanoid robot using grounded sole link , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[90]  J. Vandewalle,et al.  Analysis and properties of the generalized total least squares problem AX≈B when some or all columns in A are subject to error , 1989 .

[91]  Sébastien Briot,et al.  New method for global identification of the joint drive gains of robots using a known payload mass , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[92]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[93]  Rui Pedro Duarte Cortesão,et al.  Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..

[94]  Léon Bottou,et al.  Stochastic Gradient Descent Tricks , 2012, Neural Networks: Tricks of the Trade.

[95]  Gonzalo Joya,et al.  Hopfield Neural Networks for Parametric Identification of Dynamical Systems , 2005 .

[96]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..

[97]  P. Poignet,et al.  Extended Kalman filtering and weighted least squares dynamic identification of robot , 2000 .

[98]  Yan Wang,et al.  A Convex Optimization-Based Dynamic Model Identification Package for the da Vinci Research Kit , 2019, IEEE Robotics and Automation Letters.

[99]  Yoky Matsuoka,et al.  Modeling and System Identification of a Life-Size Brake-Actuated Manipulator , 2009, IEEE Transactions on Robotics.

[100]  Poommitol Chaicherdkiat,et al.  Simulation-based Parameter Identification Framework for the Calibration of Rigid Body Simulation Models , 2020, 2020 SICE International Symposium on Control Systems (SICE ISCS).

[101]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Gentiane Venture,et al.  Identification of standard dynamic parameters of robots with positive definite inertia matrix , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[103]  Peter C. Young,et al.  An improved instrumental variable method for industrial robot model identification , 2018 .

[104]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .

[105]  Claudio Urrea,et al.  Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot , 2016, Comput. Electr. Eng..

[106]  B.D.O. Anderson,et al.  Closed-loop output error identification algorithms for nonlinear plants , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[107]  Yoshihiko Nakamura,et al.  Identification of standard inertial parameters for large-DOF robots considering physical consistency , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[108]  Sami Haddadin,et al.  First-order-principles-based constructive network topologies: An application to robot inverse dynamics , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[109]  Chanhun Park,et al.  Backward sequential approach for dynamic parameter identification of robot manipulators , 2018 .

[110]  Tobias Ortmaier,et al.  Sensitivity-Based Adaptive SRUKF for State, Parameter, and Covariance Estimation on Mechatronic Systems , 2018 .

[111]  Maxime Gautier,et al.  Comparison Between the CLOE Method and the DIDIM Method for Robots Identification , 2014, IEEE Transactions on Control Systems Technology.

[112]  Cristian R. Rojas,et al.  A Critical View on Benchmarks based on Randomly Generated Systems , 2015 .

[113]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[114]  Peter C. Young,et al.  Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model , 2015, Autom..