Inertial Parameter Identification in Robotics: A Survey
暂无分享,去创建一个
Alexandre Janot | Quentin Leboutet | Julien Roux | Julio Rogelio Guadarrama-Olvera | Gordon Cheng | G. Cheng | A. Janot | Julien Roux | Quentin Leboutet | J. R. Guadarrama-Olvera
[1] Pierre-Olivier Vandanjon,et al. DYNAMIC IDENTIFICATION OF A VIBRATORY ASPHALT COMPACTOR FOR CONTACT EFFORTS ESTIMATION , 2006 .
[2] Giuseppe Carlo Calafiore,et al. Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation , 2001 .
[3] Rudolph van der Merwe,et al. Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .
[4] M. Indri,et al. Friction Compensation in Robotics: an Overview , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[5] Jan Swevers,et al. Maximum Likelihood Identification of a Dynamic Robot Model: Implementation Issues , 2002, Int. J. Robotics Res..
[6] Alexandre Janot,et al. An automated instrumental variable method for rigid industrial robot identification , 2018 .
[7] Eiichi Yoshida,et al. Identification of dynamics of humanoids: Systematic exciting motion generation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[8] Frank C. Park,et al. A Geometric Algorithm for Robust Multibody Inertial Parameter Identification , 2018, IEEE Robotics and Automation Letters.
[9] Hugues Garnier,et al. Comparison between the IDIM-IV method and the DIDIM method for industrial robots identification , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).
[10] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[11] Jingfu Jin,et al. Parameter identification for industrial robots with a fast and robust trajectory design approach , 2015 .
[12] Maxime Gautier,et al. Global Identification of Joint Drive Gains and Dynamic Parameters of Robots , 2014 .
[13] Naresh K. Sinha,et al. Identification of Continuous-Time Systems Using Instrumental Variables with Application to an Industrial Robot , 1986, IEEE Transactions on Industrial Electronics.
[14] Daniel E. Rivera,et al. System identification: A Wiener-Hammerstein benchmark , 2012 .
[15] Koji Yoshida,et al. Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters , 2000, Int. J. Robotics Res..
[16] Mathieu Brunot. Identification of rigid industrial robots - A system identification perspective , 2017 .
[17] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[18] Henrik Gordon Petersen,et al. A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..
[19] Maxime Gautier,et al. Using robust regressions and residual analysis to verify the reliability of LS estimation: Application in robotics , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[20] Mark W. Spong,et al. Robot dynamics and control , 1989 .
[21] Marimuthu Palaniswami,et al. Neural techniques for combinatorial optimization with applications , 1998, IEEE Trans. Neural Networks.
[22] Ioan Doré Landau,et al. An output error recursive algorithm for unbiased identification in closed loop , 1996, Autom..
[23] Austin Wang,et al. Encoding Physical Constraints in Differentiable Newton-Euler Algorithm , 2020, L4DC.
[24] Martin L. Felis. RBDL: an efficient rigid-body dynamics library using recursive algorithms , 2017, Auton. Robots.
[25] Ginalber Luiz de Oliveira Serra. Kalman Filters - Theory for Advanced Applications , 2018 .
[26] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[27] Yohannes Kassahun,et al. Experimental Robot Inverse Dynamics Identification Using Classical and Machine Learning Techniques , 2016 .
[28] Sébastien Briot,et al. Global identification of drive gains parameters of robots using a known payload , 2012, 2012 IEEE International Conference on Robotics and Automation.
[29] Chao Liu,et al. An Iterative Approach for Accurate Dynamic Model Identification of Industrial Robots , 2020, IEEE Transactions on Robotics.
[30] A.S. Paul,et al. Dual Kalman filters for autonomous terrain aided navigation in unknown environments , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..
[31] Gentiane Venture,et al. Modeling and Identification of Passenger Car Dynamics Using Robotics Formalism , 2006, IEEE Transactions on Intelligent Transportation Systems.
[32] Maxime Gautier,et al. A revised Durbin-Wu-Hausman test for industrial robot identification , 2016 .
[33] Pasquale Chiacchio,et al. A systematic procedure for the identification of dynamic parameters of robot manipulators , 1999, Robotica.
[34] J. J. Hopfield,et al. “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.
[35] Koji Yoshida,et al. Experimental Study Of The Identification Methods For An Industrial Robot Manipulator , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.
[36] Rudolph van der Merwe,et al. Dual Estimation and the Unscented Transformation , 1999, NIPS.
[37] Claudio Urrea,et al. Parameter identification methods for real redundant manipulators , 2017 .
[38] Fengfeng Xi. Effect of non-geometric errors on manipulator inertial calibration , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.
[39] E. Monmasson,et al. Parameters Estimation of the Actuator used in Haptic Interfaces: Comparison of two Identification Methods , 2006, 2006 IEEE International Symposium on Industrial Electronics.
[40] T. Söderström,et al. Instrumental variable methods for system identification , 1983 .
[41] Sabine Van Huffel,et al. Overview of total least-squares methods , 2007, Signal Process..
[42] Seyed Mahdi Hashemi,et al. Parameter identification of a robot arm using separable least squares technique , 2009, 2009 European Control Conference (ECC).
[43] Philippe Lemoine,et al. OpenSYMORO: An open-source software package for symbolic modelling of robots , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[44] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[45] Torsten Söderström,et al. On instrumental variable and total least squares approaches for identification of noisy systems , 2002 .
[46] Frank Chongwoo Park,et al. A Natural Adaptive Control Law for Robot Manipulators , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[47] Manuel Beschi,et al. A general analytical procedure for robot dynamic model reduction , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[48] Miguel Díaz-Rodríguez,et al. Comparison of trajectory parametrization methods with statistical analysis for dynamic parameter identification of serial robot , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[49] J. R. Trapero,et al. Recursive Estimation and Time-Series Analysis. An Introduction for the Student and Practitioner, Second edition, Peter C. Young. Springer (2011), 504 pp., Hardcover, $119.00, ISBN: 978-3-642-21980-1 , 2015 .
[50] I. Markovsky,et al. A Recursive Restricted Total Least-Squares Algorithm , 2014, IEEE Transactions on Signal Processing.
[51] Bruno Siciliano,et al. Lagrange and Newton-Euler dynamic modeling of a gear-driven robot manipulator with inclusion of motor inertia effects , 1995, Adv. Robotics.
[52] Eiichi Yoshida,et al. Generating persistently exciting trajectory based on condition number optimization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).
[53] J. De Schutter,et al. Dynamic Model Identification for Industrial Robots , 2007, IEEE Control Systems.
[54] Alessandro De Luca,et al. Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).
[55] Wisama Khalil,et al. SYMORO+: A system for the symbolic modelling of robots , 1997, Robotica.
[56] Bruce W. Suter. Multirate and Wavelet Signal Processing , 1997 .
[57] Adrien Escande,et al. Identification of fully physical consistent inertial parameters using optimization on manifolds , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[58] Identification of dynamic robot’s parameters using physics-based simulation models for improving accuracy , 2021 .
[59] Sabine Van Huffel,et al. Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models , 1989 .
[60] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[61] Alexandre Janot,et al. Output Error Methods for Robot Identification , 2019, Journal of Dynamic Systems, Measurement, and Control.
[62] Dana Kulic,et al. Constrained dynamic parameter estimation using the Extended Kalman Filter , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[63] Gonzalo Joya,et al. Parametric identification of robotic systems with stable time-varying Hopfield networks , 2004 .
[64] Eiichi Yoshida,et al. Humanoid and Human Inertia Parameter Identification Using Hierarchical Optimization , 2016, IEEE Transactions on Robotics.
[65] Carlos Canudas de Wit,et al. A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..
[66] Vicente Mata,et al. Dynamic parameter identification in industrial robots considering physical feasibility , 2005, Adv. Robotics.
[67] Olav Reiersol,et al. Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .
[68] Maxime Gautier,et al. A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics , 2010, IEEE Transactions on Control Systems Technology.
[69] Maxime Gautier. Dynamic identification of robots with power model , 1997, Proceedings of International Conference on Robotics and Automation.
[70] Patrick M. Wensing,et al. Sequential semidefinite optimization for physically and statistically consistent robot identification , 2021 .
[71] Roy Featherstone,et al. Rigid Body Dynamics Algorithms , 2007 .
[72] Jean-Jacques E. Slotine,et al. Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution , 2017, IEEE Robotics and Automation Letters.
[73] Gentiane Venture,et al. Identification of consistent standard dynamic parameters of industrial robots , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[74] Jun Wu,et al. Review: An overview of dynamic parameter identification of robots , 2010 .
[75] Jörn Malzahn,et al. FloBaRoID - A Software Package for the Identification of Robot Dynamics Parameters , 2017, RAAD.
[76] Rui Cortesão,et al. Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approach , 2019, IEEE/ASME Transactions on Mechatronics.
[77] Maxime Gautier,et al. Dynamic identification of a 6 dof robot without joint position data , 2011, 2011 IEEE International Conference on Robotics and Automation.
[78] Peter I. Corke,et al. A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..
[79] Maxime Gautier,et al. A Generic Instrumental Variable Approach for Industrial Robot Identification , 2014, IEEE Transactions on Control Systems Technology.
[80] Patrick M. Wensing,et al. Geometric Robot Dynamic Identification: A Convex Programming Approach , 2020, IEEE Transactions on Robotics.
[81] Maxime Gautier,et al. Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data , 2014 .
[82] Wisama Khalil,et al. Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..
[83] Sabine Van Huffel,et al. The total least squares problem , 1993 .
[84] P. Holland,et al. Robust regression using iteratively reweighted least-squares , 1977 .
[85] Andreas Kroll,et al. Benchmark problems for nonlinear system identification and control using Soft Computing methods: Need and overview , 2014, Appl. Soft Comput..
[86] S. Abe. Theories on the Hopfield neural networks , 1989, International 1989 Joint Conference on Neural Networks.
[87] Wisama Khalil,et al. Modeling, Identification and Control of Robots , 2003 .
[88] P. Poignet,et al. Robust dynamic experimental identification of robots with set membership uncertainty , 2005, IEEE/ASME Transactions on Mechatronics.
[89] Eiichi Yoshida,et al. Identification of the inertial parameters of a humanoid robot using grounded sole link , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).
[90] J. Vandewalle,et al. Analysis and properties of the generalized total least squares problem AX≈B when some or all columns in A are subject to error , 1989 .
[91] Sébastien Briot,et al. New method for global identification of the joint drive gains of robots using a known payload mass , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[92] Jan Swevers,et al. Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..
[93] Rui Pedro Duarte Cortesão,et al. Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..
[94] Léon Bottou,et al. Stochastic Gradient Descent Tricks , 2012, Neural Networks: Tricks of the Trade.
[95] Gonzalo Joya,et al. Hopfield Neural Networks for Parametric Identification of Dynamical Systems , 2005 .
[96] Koichi Osuka,et al. Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..
[97] P. Poignet,et al. Extended Kalman filtering and weighted least squares dynamic identification of robot , 2000 .
[98] Yan Wang,et al. A Convex Optimization-Based Dynamic Model Identification Package for the da Vinci Research Kit , 2019, IEEE Robotics and Automation Letters.
[99] Yoky Matsuoka,et al. Modeling and System Identification of a Life-Size Brake-Actuated Manipulator , 2009, IEEE Transactions on Robotics.
[100] Poommitol Chaicherdkiat,et al. Simulation-based Parameter Identification Framework for the Calibration of Rigid Body Simulation Models , 2020, 2020 SICE International Symposium on Control Systems (SICE ISCS).
[101] J J Hopfield,et al. Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[102] Gentiane Venture,et al. Identification of standard dynamic parameters of robots with positive definite inertia matrix , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[103] Peter C. Young,et al. An improved instrumental variable method for industrial robot model identification , 2018 .
[104] P. J. Huber. The 1972 Wald Lecture Robust Statistics: A Review , 1972 .
[105] Claudio Urrea,et al. Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot , 2016, Comput. Electr. Eng..
[106] B.D.O. Anderson,et al. Closed-loop output error identification algorithms for nonlinear plants , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[107] Yoshihiko Nakamura,et al. Identification of standard inertial parameters for large-DOF robots considering physical consistency , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[108] Sami Haddadin,et al. First-order-principles-based constructive network topologies: An application to robot inverse dynamics , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).
[109] Chanhun Park,et al. Backward sequential approach for dynamic parameter identification of robot manipulators , 2018 .
[110] Tobias Ortmaier,et al. Sensitivity-Based Adaptive SRUKF for State, Parameter, and Covariance Estimation on Mechatronic Systems , 2018 .
[111] Maxime Gautier,et al. Comparison Between the CLOE Method and the DIDIM Method for Robots Identification , 2014, IEEE Transactions on Control Systems Technology.
[112] Cristian R. Rojas,et al. A Critical View on Benchmarks based on Randomly Generated Systems , 2015 .
[113] M. Gautier,et al. Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .
[114] Peter C. Young,et al. Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model , 2015, Autom..