Multimesh anisotropic adaptivity for the Boltzmann transport equation
暂无分享,去创建一个
Christopher C. Pain | Patrick E. Farrell | Matthew D. Eaton | A. G. Buchan | P. Farrell | C. Pain | A. Buchan | C.M.J. Baker | P. Warner | P. Warner | M. D. Eaton | Christopher M. J. Baker
[1] R. P. Smedley-Stevenson,et al. Riemann boundary conditions for the Boltzmann transport equation using arbitrary angular approximations , 2011 .
[2] Yu. V. Vasilevskii,et al. An adaptive algorithm for quasioptimal mesh generation , 1999 .
[3] Matthew D. Piggott,et al. Conservative interpolation between unstructured meshes via supermesh construction , 2009 .
[4] R. P. Smedley-Stevenson,et al. Self-Adaptive Spherical Wavelets for Angular Discretizations of the Boltzmann Transport Equation , 2008 .
[5] Frédéric Alauzet,et al. Multi-model and multi-scale optimization strategies. Application to sonic boom reduction , 2008 .
[6] R. Taylor. The Finite Element Method, the Basis , 2000 .
[7] S. Glasstone,et al. Nuclear Reactor Engineering , 1955 .
[8] Christopher C. Pain,et al. A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .
[9] R. T. Ackroyd,et al. Finite Element Methods for Particle Transport: Applications to Reactor and Radiation Physics , 1997 .
[10] C.R.E. de Oliveira,et al. An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering , 1986 .
[11] Danny Lathouwers,et al. Goal-oriented spatial adaptivity for the SN equations on unstructured triangular meshes , 2011 .
[12] S.L. Ho,et al. A combined wavelet-FE method for transient electromagnetic-field computations , 2006, IEEE Transactions on Magnetics.
[13] Yuri V. Vassilevski,et al. Analysis of Hessian Recovery Methods for Generating Adaptive Meshes , 2006, IMR.
[14] J. Z. Zhu,et al. The finite element method , 1977 .
[15] C.R.E. de Oliveira,et al. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .
[16] D. V. Griffiths,et al. Programming the finite element method , 1982 .
[17] C C Pain,et al. Anisotropic mesh adaptivity for multi-scale ocean modelling , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[19] Gustavo C. Buscaglia,et al. Anisotropic mesh optimization and its application in adaptivity , 1997 .
[20] R. P. Smedley-Stevenson,et al. Streamline upwind Petrov–Galerkin methods for the steady-state Boltzmann transport equation , 2006 .
[21] R. P. Smedley-Stevenson,et al. Linear and Quadratic Hexahedral Wavelets on the Sphere for Angular Discretizations of the Boltzmann Transport Equation , 2008 .
[22] M. Giles. On adjoint equations for error analysis and optimal grid adaptation in CFD , 1997 .
[23] C.R.E. de Oliveira,et al. Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity , 2006 .
[24] Wolfgang Bangerth,et al. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations , 2009 .
[25] Patrick E. Farrell,et al. Conservative interpolation between volume meshes by local Galerkin projection , 2011 .
[26] Alain Hébert,et al. Applied reactor physics , 2009 .
[27] Joel H. Ferziger,et al. Computational methods for fluid dynamics , 1996 .
[28] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[29] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[30] Danny Lathouwers,et al. Spatially adaptive eigenvalue estimation for the SN equations on unstructured triangular meshes , 2011 .
[31] Weizhang Huang,et al. Anisotropic Mesh Adaptation and Movement , 2005 .
[32] R. P. Smedley-Stevenson,et al. The Inner-Element Subgrid Scale Finite Element Method for the Boltzmann Transport Equation , 2010 .
[33] R. P. Smedley-Stevenson,et al. Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation , 2005 .
[34] Wolfgang Bangerth,et al. Goal-Oriented h-Adaptivity for the Multigroup SPN Equations , 2010 .
[35] Generalization of the Variational Nodal Method to Spherical Harmonics Approximations in R-Z Geometry , 2006 .
[36] J. Dompierre,et al. Numerical comparison of some Hessian recovery techniques , 2007 .