Embedding of Graphs with discrete Attributes via Label frequencies

Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.

[1]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[2]  M. Vanrell,et al.  Parametric fuzzy sets for automatic color naming. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Alfred O. Hero,et al.  A binary linear programming formulation of the graph edit distance , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[6]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[7]  J. Gasteiger,et al.  Chemoinformatics: A Textbook , 2003 .

[8]  J. Kazius,et al.  Derivation and validation of toxicophores for mutagenicity prediction. , 2005, Journal of medicinal chemistry.

[9]  Ernest Valveny,et al.  Dimensionality Reduction for Graph of Words Embedding , 2011, GbRPR.

[10]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[11]  Miro Kraetzl,et al.  Graph distances using graph union , 2001, Pattern Recognit. Lett..

[12]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Bernhard Schölkopf,et al.  Dynamic Alignment Kernels , 2000 .

[14]  Kaspar Riesen,et al.  Approximate graph edit distance computation by means of bipartite graph matching , 2009, Image Vis. Comput..

[15]  C. Watkins Dynamic Alignment Kernels , 1999 .

[16]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[17]  Christine Solnon,et al.  Reactive Tabu Search for Measuring Graph Similarity , 2005, GbRPR.

[18]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[19]  Kaspar Riesen,et al.  Towards the unification of structural and statistical pattern recognition , 2012, Pattern Recognit. Lett..

[20]  Horst Bunke,et al.  Automatic learning of cost functions for graph edit distance , 2007, Inf. Sci..

[21]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[22]  Takashi Washio,et al.  An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data , 2000, PKDD.

[23]  Edwin R. Hancock,et al.  Graph Characterization via Ihara Coefficients , 2011, IEEE Transactions on Neural Networks.

[24]  Celso C. Ribeiro,et al.  A Randomized Heuristic for Scene Recognition by Graph Matching , 2004, WEA.

[25]  Edwin R. Hancock,et al.  Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Horst Bunke,et al.  Inexact graph matching for structural pattern recognition , 1983, Pattern Recognit. Lett..

[27]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[28]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[29]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[30]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[31]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[32]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, CVPR Workshops.

[33]  Frank C. Curriero,et al.  On the Use of Non-Euclidean Distance Measures in Geostatistics , 2007 .

[34]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[35]  Thomas Gärtner,et al.  Kernels for structured data , 2008, Series in Machine Perception and Artificial Intelligence.

[36]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[37]  Ernest Valveny,et al.  Vocabulary Selection for Graph of Words Embedding , 2011, IbPRIA.

[38]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[39]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[40]  Gabriel Valiente,et al.  A graph distance metric combining maximum common subgraph and minimum common supergraph , 2001, Pattern Recognit. Lett..

[41]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[42]  Luc De Raedt,et al.  Feature Construction with Version Spaces for Biochemical Applications , 2001, ICML.

[43]  Robert P. W. Duin,et al.  Prototype selection for dissimilarity-based classifiers , 2006, Pattern Recognit..

[44]  Horst Bunke,et al.  Self-organizing maps for learning the edit costs in graph matching , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[45]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[46]  Kaspar Riesen,et al.  Graph Classification and Clustering Based on Vector Space Embedding , 2010, Series in Machine Perception and Artificial Intelligence.

[47]  Salvatore Tabbone,et al.  Graph Embedding Using Constant Shift Embedding , 2010, ICPR Contests.

[48]  Tatsuya Akutsu,et al.  Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines , 2005, J. Chem. Inf. Model..

[49]  Horst Bunke,et al.  Bridging the Gap between Graph Edit Distance and Kernel Machines , 2007, Series in Machine Perception and Artificial Intelligence.

[50]  Kaspar Riesen,et al.  Fast Suboptimal Algorithms for the Computation of Graph Edit Distance , 2006, SSPR/SPR.

[51]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.