Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem
暂无分享,去创建一个
[1] Hehu Xie,et al. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.
[2] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[3] Carsten Carstensen,et al. Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..
[4] Hehu Xie,et al. Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.
[5] Shin'ichi Oishi,et al. Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains , 2013 .
[6] Mitsuhiro Nakao,et al. A numerical verification method for the existence of weak solutions for nonlinear boundary value problems , 1992 .
[7] Hehu Xie,et al. A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods , 2015 .
[8] JunHu,et al. THE LOWER APPROXIMATION OF EIGENVALUE BY LUMPED MASS FINITE ELEMENT METHOD , 2004 .
[9] Tomás Vejchodský,et al. Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..
[10] Xuefeng Liu. A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..
[11] Nobito Yamamoto,et al. Numerical verifications for eigenvalues of second-order elliptic operators , 1999 .
[12] Alfredo Bermúdez,et al. A finite element solution of an added mass formulation for coupled fluid-solid vibrations , 2000, Numerische Mathematik.
[13] Henning Behnke,et al. The calculation of guaranteed bounds for eigenvalues using complementary variational principles , 1991, Computing.
[14] Michael Plum. Bounds for eigenvalues of second-order elliptic differential operators , 1991 .
[15] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[16] C. D. Boor,et al. Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .
[17] Fumio Kikuchi,et al. Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .
[18] 劉 雪峰,et al. Verified eigenvalue evaluation for Laplace operator on arbitrary polygonal domain (科学技術計算アルゴリズムの数理的基盤と展開--RIMS研究集会報告集) , 2011 .
[19] Michael Plum,et al. Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .
[20] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[21] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[22] Dorin Bucur,et al. Asymptotic analysis and scaling of friction parameters , 2006 .
[23] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..
[24] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[25] Fumio Kikuchi,et al. Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .
[26] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.