Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem

To provide mathematically rigorous eigenvalue bounds for the Steklov eigenvalue problem, an enhanced version of the eigenvalue estimation algorithm developed by the third author is proposed, which removes the requirements of the positive definiteness of bilinear forms in the formulation of eigenvalue problems. In practical eigenvalue estimation, the Crouzeix--Raviart finite element method (FEM) along with quantitative error estimation is adopted. Numerical experiments for eigenvalue problems defined on a square domain and an L-shaped domain are provided to validate the precision of computed eigenvalue bounds.

[1]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[4]  Hehu Xie,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.

[5]  Shin'ichi Oishi,et al.  Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains , 2013 .

[6]  Mitsuhiro Nakao,et al.  A numerical verification method for the existence of weak solutions for nonlinear boundary value problems , 1992 .

[7]  Hehu Xie,et al.  A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods , 2015 .

[8]  JunHu,et al.  THE LOWER APPROXIMATION OF EIGENVALUE BY LUMPED MASS FINITE ELEMENT METHOD , 2004 .

[9]  Tomás Vejchodský,et al.  Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..

[10]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[11]  Nobito Yamamoto,et al.  Numerical verifications for eigenvalues of second-order elliptic operators , 1999 .

[12]  Alfredo Bermúdez,et al.  A finite element solution of an added mass formulation for coupled fluid-solid vibrations , 2000, Numerische Mathematik.

[13]  Henning Behnke,et al.  The calculation of guaranteed bounds for eigenvalues using complementary variational principles , 1991, Computing.

[14]  Michael Plum Bounds for eigenvalues of second-order elliptic differential operators , 1991 .

[15]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[16]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[17]  Fumio Kikuchi,et al.  Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .

[18]  劉 雪峰,et al.  Verified eigenvalue evaluation for Laplace operator on arbitrary polygonal domain (科学技術計算アルゴリズムの数理的基盤と展開--RIMS研究集会報告集) , 2011 .

[19]  Michael Plum,et al.  Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .

[20]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[21]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[22]  Dorin Bucur,et al.  Asymptotic analysis and scaling of friction parameters , 2006 .

[23]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[24]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[25]  Fumio Kikuchi,et al.  Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .

[26]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.