Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films.

[1]  I. V. van Stokkum,et al.  Enhanced hydrogen bonding induced by optical excitation: unexpected subnanosecond photoinduced dynamics in a peptide-based [2]rotaxane. , 2001, Journal of the American Chemical Society.

[2]  Francesco Zerbetto,et al.  Entropy-driven translational isomerism: a tristable molecular shuttle. , 2003, Angewandte Chemie.

[3]  M. N. Paddon-Row,et al.  Lösungsmittelabhängigkeit des photoinduzierten intramolekularen Elektronentransfers: Kriterien für den Entwurf von Systemen mit rascher, lösungsmittelunabhängiger Ladungstrennung , 1991 .

[4]  Paul D. Williams,et al.  Synthesis of functional polymers by living radical polymerisationBasis of a presentation given at Materials Discussion No. 6, 12?14th September 2003, Durham, UK.Electronic supplementary information (ESI) available: synthesis and characterization of initiators 2, 3 and 5?7. See http://www.rsc.org/sup , 2003 .

[5]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[6]  Francesco Zerbetto,et al.  Information Storage Using Supramolecular Surface Patterns , 2003, Science.

[7]  Christopher A. Hunter Zwischenmolekulare Wechselwirkungen in Lösung: eine vereinfachende Quantifizierungsmethode , 2004 .

[8]  A. P. de Silva,et al.  Fluorescent polymeric AND logic gate with temperature and pH as inputs. , 2004, Journal of the American Chemical Society.

[9]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[10]  R. C. Elder,et al.  Emission energy correlates with inverse of gold-gold distance for various [Au(SCN)2]- salts. , 2004, Journal of the American Chemical Society.

[11]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[12]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[13]  Hsian-Rong Tseng,et al.  Molecular-mechanical switch-based solid-state electrochromic devices. , 2004, Angewandte Chemie.

[14]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[15]  Caiguo Gong,et al.  Steuerung der Mikrostruktur in polymeren molekularen Shuttles: lösungsmittelinduzierte Lokalisierung von Makrocyclen in Poly(urethankronenetherrotaxanen) , 1997 .

[16]  He Tian,et al.  A light-driven rotaxane molecular shuttle with dual fluorescence addresses. , 2004, Organic letters.

[17]  M. Paddon-Row,et al.  Solvent Dependence of Photoinduced Intramolecular Electron Transfer: Criteria for the Design of Systems with Rapid, Solvent‐Independent Charge Separation , 1991 .

[18]  Harry W. Gibson,et al.  Poly(urethane/crown ether rotaxane)s with Solvent Switchable Microstructures , 1998 .

[19]  H. Gibson,et al.  Threading/Dethreading Exchange Rates as Structural Probes in Polypseudorotaxanes , 1999 .

[20]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[21]  Alexandra M. Z. Slawin,et al.  Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .

[22]  David A Leigh,et al.  Shuttling through reversible covalent chemistry. , 2004, Chemical communications.

[23]  S. Webber,et al.  pH-Induced Fluorescence Quenching of Anthracene-Labeled Poly(2-vinylpyridine) , 2004 .

[24]  He Tian,et al.  A Lockable Light‐Driven Molecular Shuttle with a Fluorescent Signal , 2004 .

[25]  David A. Leigh,et al.  Glycylglycin‐Rotaxane — Wasserstoffbrückenvermittelte Selbstorganisation synthetischer Peptid‐Rotaxane , 1997 .

[26]  J. F. Stoddart,et al.  The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.

[27]  William A. Goddard,et al.  Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .

[28]  Francesco Zerbetto,et al.  A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.

[29]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[30]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[31]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[32]  David A Leigh,et al.  Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. , 2004, Angewandte Chemie.

[33]  Harry W. Gibson,et al.  Controlling Microstructure in Polymeric Molecular Shuttles: Solvent‐Induced Localization of Macrocycles in Poly(urethane/crown ether) Rotaxanes , 1997 .

[34]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[35]  D. Haddleton,et al.  Atom Transfer Polymerization of Methyl Methacrylate Mediated by Alkylpyridylmethanimine Type Ligands, Copper(I) Bromide, and Alkyl Halides in Hydrocarbon Solution , 1999 .

[36]  Maurizio Prato,et al.  Hydrogen bond-assembled fullerene molecular shuttle. , 2003, Organic letters.

[37]  David A Leigh,et al.  Shuttling through anion recognition. , 2004, Angewandte Chemie.

[38]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[39]  Euan R Kay,et al.  Electrochemically switchable hydrogen-bonded molecular shuttles. , 2003, Journal of the American Chemical Society.

[40]  M. Sawamoto,et al.  Metal-catalyzed living radical polymerization. , 2001, Chemical reviews.

[41]  C. Hunter,et al.  Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.