Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films.
暂无分享,去创建一个
Francesco Zerbetto | David A Leigh | Salvador León | Wybren Jan Buma | A. Slawin | D. Haddleton | F. Zerbetto | W. Buma | D. Leigh | A. M. Brouwer | G. W. Wurpel | Emilio M Pérez | Alexandra M Z Slawin | A. Carmichael | E. Pérez | J. Wong | S. León | Jenny K Y Wong | David M Haddleton | M. A. Morales | George W H Wurpel | Carlos G Saiz | M Angeles F Morales | Adrian J Carmichael | A Manfred Brouwer | Carlos G. Saiz | A. Brouwer | Alexandra M. Z. Slawin | G. W. H. Wurpel
[1] I. V. van Stokkum,et al. Enhanced hydrogen bonding induced by optical excitation: unexpected subnanosecond photoinduced dynamics in a peptide-based [2]rotaxane. , 2001, Journal of the American Chemical Society.
[2] Francesco Zerbetto,et al. Entropy-driven translational isomerism: a tristable molecular shuttle. , 2003, Angewandte Chemie.
[3] M. N. Paddon-Row,et al. Lösungsmittelabhängigkeit des photoinduzierten intramolekularen Elektronentransfers: Kriterien für den Entwurf von Systemen mit rascher, lösungsmittelunabhängiger Ladungstrennung , 1991 .
[4] Paul D. Williams,et al. Synthesis of functional polymers by living radical polymerisationBasis of a presentation given at Materials Discussion No. 6, 12?14th September 2003, Durham, UK.Electronic supplementary information (ESI) available: synthesis and characterization of initiators 2, 3 and 5?7. See http://www.rsc.org/sup , 2003 .
[5] Terence E. Rice,et al. Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.
[6] Francesco Zerbetto,et al. Information Storage Using Supramolecular Surface Patterns , 2003, Science.
[7] Christopher A. Hunter. Zwischenmolekulare Wechselwirkungen in Lösung: eine vereinfachende Quantifizierungsmethode , 2004 .
[8] A. P. de Silva,et al. Fluorescent polymeric AND logic gate with temperature and pH as inputs. , 2004, Journal of the American Chemical Society.
[9] Jean-Pierre Sauvage,et al. Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .
[10] R. C. Elder,et al. Emission energy correlates with inverse of gold-gold distance for various [Au(SCN)2]- salts. , 2004, Journal of the American Chemical Society.
[11] Vincenzo Balzani,et al. Molecular Devices and Machines– A Journey into the Nano World , 2003 .
[12] Francesco Zerbetto,et al. Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.
[13] Hsian-Rong Tseng,et al. Molecular-mechanical switch-based solid-state electrochromic devices. , 2004, Angewandte Chemie.
[14] Stoddart,et al. Artificial Molecular Machines. , 2000, Angewandte Chemie.
[15] Caiguo Gong,et al. Steuerung der Mikrostruktur in polymeren molekularen Shuttles: lösungsmittelinduzierte Lokalisierung von Makrocyclen in Poly(urethankronenetherrotaxanen) , 1997 .
[16] He Tian,et al. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. , 2004, Organic letters.
[17] M. Paddon-Row,et al. Solvent Dependence of Photoinduced Intramolecular Electron Transfer: Criteria for the Design of Systems with Rapid, Solvent‐Independent Charge Separation , 1991 .
[18] Harry W. Gibson,et al. Poly(urethane/crown ether rotaxane)s with Solvent Switchable Microstructures , 1998 .
[19] H. Gibson,et al. Threading/Dethreading Exchange Rates as Structural Probes in Polypseudorotaxanes , 1999 .
[20] A. P. de Silva,et al. Molecular-scale logic gates. , 2004, Chemistry.
[21] Alexandra M. Z. Slawin,et al. Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .
[22] David A Leigh,et al. Shuttling through reversible covalent chemistry. , 2004, Chemical communications.
[23] S. Webber,et al. pH-Induced Fluorescence Quenching of Anthracene-Labeled Poly(2-vinylpyridine) , 2004 .
[24] He Tian,et al. A Lockable Light‐Driven Molecular Shuttle with a Fluorescent Signal , 2004 .
[25] David A. Leigh,et al. Glycylglycin‐Rotaxane — Wasserstoffbrückenvermittelte Selbstorganisation synthetischer Peptid‐Rotaxane , 1997 .
[26] J. F. Stoddart,et al. The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.
[27] William A. Goddard,et al. Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .
[28] Francesco Zerbetto,et al. A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.
[29] David A. Leigh,et al. Peptide-Based Molecular Shuttles , 1997 .
[30] David A Leigh,et al. Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.
[31] F. Paolucci,et al. Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.
[32] David A Leigh,et al. Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. , 2004, Angewandte Chemie.
[33] Harry W. Gibson,et al. Controlling Microstructure in Polymeric Molecular Shuttles: Solvent‐Induced Localization of Macrocycles in Poly(urethane/crown ether) Rotaxanes , 1997 .
[34] J. Fraser Stoddart,et al. Künstliche molekulare Maschinen , 2000 .
[35] D. Haddleton,et al. Atom Transfer Polymerization of Methyl Methacrylate Mediated by Alkylpyridylmethanimine Type Ligands, Copper(I) Bromide, and Alkyl Halides in Hydrocarbon Solution , 1999 .
[36] Maurizio Prato,et al. Hydrogen bond-assembled fullerene molecular shuttle. , 2003, Organic letters.
[37] David A Leigh,et al. Shuttling through anion recognition. , 2004, Angewandte Chemie.
[38] James R Heath,et al. Whence Molecular Electronics? , 2004, Science.
[39] Euan R Kay,et al. Electrochemically switchable hydrogen-bonded molecular shuttles. , 2003, Journal of the American Chemical Society.
[40] M. Sawamoto,et al. Metal-catalyzed living radical polymerization. , 2001, Chemical reviews.
[41] C. Hunter,et al. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.