Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation

The molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNAGln. The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNAGlu and Glu-tRNAGln. The Glu-tRNAGln is then converted to Gln-tRNAGln by an amidotransferase. Since the well-characterized bacterial ND-GluRS enzymes recognize tRNAGlu and tRNAGln with an unrelated α-helical cage domain in contrast to the β-barrel anticodon-binding domain in archaeal and eukaryotic GluRSs, the mode of tRNAGlu/tRNAGln discrimination in archaea and eukaryotes was unknown. Here, we present the crystal structure of the Methanothermobacter thermautotrophicus ND-GluRS, which is the evolutionary predecessor of both the glutaminyl-tRNA synthetase (GlnRS) and the eukaryotic discriminating GluRS. Comparison with the previously solved structure of the Escherichia coli GlnRS-tRNAGln complex reveals the structural determinants responsible for specific tRNAGln recognition by GlnRS compared to promiscuous recognition of both tRNAs by the ND-GluRS. The structure also shows the amino acid recognition pocket of GluRS is more variable than that found in GlnRS. Phylogenetic analysis is used to reconstruct the key events in the evolution from indirect to direct genetic encoding of glutamine.

[1]  M Ibba,et al.  Glutaminyl-tRNA synthetase. , 1997, Biological chemistry.

[2]  J. Perona,et al.  A rationally engineered misacylating aminoacyl-tRNA synthetase , 2008, Proceedings of the National Academy of Sciences.

[3]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[4]  Zaida Luthey-Schulten,et al.  MultiSeq: unifying sequence and structure data for evolutionary analysis , 2006, BMC Bioinformatics.

[5]  M. Yarus On translation by RNAs alone. , 2001, Cold Spring Harbor symposia on quantitative biology.

[6]  D. Jahn,et al.  Crystal structure of a non-discriminating glutamyl-tRNA synthetase. , 2006, Journal of molecular biology.

[7]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[8]  G. Sheldrick,et al.  Locating the anomalous scatterer substructures in halide and sulfur phasing. , 2003, Acta crystallographica. Section D, Biological crystallography.

[9]  R. Giegé,et al.  Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation , 2007, Nucleic acids research.

[10]  T. Steitz,et al.  How glutaminyl-tRNA synthetase selects glutamine. , 1998, Structure.

[11]  M. Siatecka,et al.  Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. , 1998, European journal of biochemistry.

[12]  Thomas Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution, density modification and model building. , 2004, Journal of synchrotron radiation.

[13]  P. Schimmel,et al.  Genetic code origins: tRNAs older than their synthetases? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Söll,et al.  Protein biosynthesis in organelles requires misaminoacylation of tRNA , 1988, Nature.

[15]  T. Steitz,et al.  Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase , 1991, Nature.

[16]  Thomas C Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution and density modification. , 2003, Methods in enzymology.

[17]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[18]  M. Mirande,et al.  Switching the amino acid specificity of an aminoacyl-tRNA synthetase. , 1998, Biochemistry.

[19]  J. Perona,et al.  Shape-selective RNA recognition by cysteinyl-tRNA synthetase , 2004, Nature Structural &Molecular Biology.

[20]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[21]  O. Nureki,et al.  Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. , 1993, The Journal of biological chemistry.

[22]  R. Vincentelli,et al.  The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. , 2004, Journal of molecular biology.

[23]  Ilka U. Heinemann,et al.  The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution , 2009, Proceedings of the National Academy of Sciences.

[24]  D. Söll,et al.  A truncated aminoacyl-tRNA synthetase modifies RNA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[26]  M. Saraste,et al.  FEBS Lett , 2000 .

[27]  D. Söll,et al.  A tRNAGlu that uncouples protein and tetrapyrrole biosynthesis , 2005, FEBS letters.

[28]  James R. Brown,et al.  Gene Descent, Duplication, and Horizontal Transfer in the Evolution of Glutamyl- and Glutaminyl-tRNA Synthetases , 1999, Journal of Molecular Evolution.

[29]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Katoh,et al.  Biogenesis of glutaminyl-mt tRNAGln in human mitochondria , 2009, Proceedings of the National Academy of Sciences.

[31]  J. Perona,et al.  Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. , 2003, Journal of molecular biology.

[32]  P. Schimmel,et al.  Two Classes of tRNA Synthetases Suggested by Sterically Compatible Dockings on tRNA Acceptor Stem , 2001, Cell.

[33]  D. Söll,et al.  How an obscure archaeal gene inspired the discovery of selenocysteine biosynthesis in humans , 2009, IUBMB life.

[34]  Département de Biochimie,et al.  A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro , 1986, Journal of bacteriology.

[35]  G. Levicán,et al.  Regulation of a glutamyl-tRNA synthetase by the heme status , 2007, Proceedings of the National Academy of Sciences.

[36]  Shigeyuki Yokoyama,et al.  Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase , 2001, Nature Structural Biology.

[37]  R. Giegé,et al.  A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. , 2004, Nucleic acids research.

[38]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[39]  D. Söll,et al.  On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. , 2008, Journal of molecular biology.

[40]  M. Wilcox,et al.  Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Dieter Söll,et al.  From one amino acid to another: tRNA-dependent amino acid biosynthesis , 2008, Nucleic acids research.

[42]  J. Perona,et al.  Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. de Reuse,et al.  A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Söll,et al.  Emergence of the universal genetic code imprinted in an RNA record , 2006, Proceedings of the National Academy of Sciences.

[45]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[46]  H. Becker,et al.  Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. , 2009, Genes & development.

[47]  Dieter Söll,et al.  Functional convergence of two lysyl-tRNA synthetases with unrelated topologies , 2002, Nature Structural Biology.

[48]  T. Hendrickson,et al.  Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases. , 2004, Journal of molecular biology.

[49]  H. Murakami,et al.  The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. , 2007, Current opinion in chemical biology.

[50]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[51]  C. Woese The genetic code : the molecular basis for genetic expression , 1967 .

[52]  D. Söll,et al.  A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans , 2001, FEBS letters.

[53]  Dieter Söll,et al.  Domain-specific recruitment of amide amino acids for protein synthesis , 2000, Nature.

[54]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[55]  D. Söll,et al.  Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase , 1991, Nature.

[56]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[57]  R. Giegé,et al.  An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[59]  M. Bailly,et al.  Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants , 2008, Proceedings of the National Academy of Sciences.

[60]  B. Lorber,et al.  Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. , 2008, Journal of molecular biology.