Parallel Search Using Portfolios

Combinatorial search problems can require exponentially growing search cost as the size of the problems increase. Fortunately, a variety of heuristic methods solve many such problems much more rapidly than would be expected from the increasing size of the search space. Such heuristics often have di erent strengths, so running them in parallel can give good performance across a wider range of problems than any individual heuristic. Such approaches, analogous to portfolios in nancial markets, can simultaneously improve expected performance and reduce the performance variation. This paper describes this approach and directions for future work involving cooperative methods and alternate computational devices. Multiple Approaches to Combinatorial

[1]  W. Sharpe Portfolio Theory and Capital Markets , 1970 .

[2]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[3]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[4]  G. Perry,et al.  Sensor-based robotic assembly systems: Research and applications in electronic manufacturing , 1983, Proceedings of the IEEE.

[5]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[6]  T. Cover,et al.  Game-theoretic optimal portfolios , 1988 .

[7]  Gregory Provan A complexity analysis of assumption-based truth maintenance systems , 1988 .

[8]  Johan de Kleer,et al.  A Comparison of ATMS and CSP Techniques , 1989, IJCAI.

[9]  Wolfgang Ertel,et al.  Random competition: a simple, but efficient method for parallelizing inference systems , 1990, Forschungsberichte, TU Munich.

[10]  B A Huberman,et al.  Cooperative Solution of Constraint Satisfaction Problems , 1991, Science.

[11]  Tad Hogg,et al.  Controlling chaos in distributed systems , 1991, IEEE Trans. Syst. Man Cybern..

[12]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[13]  David Upton,et al.  A Flexible Structure for Computer-Controlled Manufacturing Systems , 1992 .

[14]  Pedro S. de Souza,et al.  Asynchronous organizations for multi-algorithm problems , 1993, SAC '93.

[15]  Tad Hogg,et al.  Solving the Really Hard Problems with Cooperative Search , 1993, AAAI.

[16]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[17]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[18]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[19]  Geoffrey Zweig,et al.  Physical mapping of chromosomes using unique probes , 1994, SODA '94.

[20]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[21]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[22]  Wolfgang Ertel,et al.  Optimal parallelization of Las Vegas algorithms , 1993, Forschungsberichte, TU Munich.

[23]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[24]  K. Nagel LIFE TIMES OF SIMULATED TRAFFIC JAMS , 1993, cond-mat/9310018.

[25]  Tad Hogg,et al.  Expected Gains from Parallelizing Constraint Solving for Hard Problems , 1994, AAAI.

[26]  J. Bryzek,et al.  Micromachines on the march , 1994, IEEE Spectrum.

[27]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[28]  Mark H. Yim,et al.  Locomotion With A Unit-Modular Reconfigurable Robot , 1995 .

[29]  H T Siegelmann,et al.  Dating and Context of Three Middle Stone Age Sites with Bone Points in the Upper Semliki Valley, Zaire , 2007 .

[30]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[31]  Toby Walsh,et al.  An Empirical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem , 1996, CP.

[32]  Tad Hogg,et al.  Learning in Multiagent Control of Smart Matter , 1997 .

[33]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[34]  P D Kaplan,et al.  DNA solution of the maximal clique problem. , 1997, Science.

[35]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[36]  Charles Seife Hedging Bets on Hard Problems , 1997, Science.

[37]  Mark H. Yim,et al.  Rhombic dodecahedron shape for self-assembling robots , 1997 .

[38]  S. Murthy,et al.  Agent-Based Cooperative Scheduling , 1997 .

[39]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[40]  T. Hogg Exploiting Problem Structure as a Search Heuristic , 1998 .

[41]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[42]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[43]  Marsette Vona,et al.  Self-reconfiguration planning with compressible unit modules , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[44]  T. Hogg Quantum search heuristics , 2000 .

[45]  Tad Hogg,et al.  Multiagent control of self-reconfigurable robots , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[46]  Leonidas J. Guibas,et al.  A method for obtaining randomized algorithms with small tail probabilities , 1996, Algorithmica.

[47]  G. Hunanyan,et al.  Portfolio Selection , 2019, Finanzwirtschaft, Banken und Bankmanagement I Finance, Banks and Bank Management.