IGUANA: Input Generation Using Automated Novel Algorithms. A Plug and Play Research Tool

IGUANA is a tool for automatically generating software test data using search-based approaches. Search-based approaches explore the input domain of a program for test data and are guided by a fitness function. The fitness function evaluates input data and measures how suitable it is for a given purpose, for example the execution of a particular statement in a program, or the falsification of an assertion statement. The IGUANA tool is designed so that researchers can easily compare and contrast different search methods (e.g. random search, hill climbing and genetic algorithms), fitness functions (e.g. for obtaining branch coverage of a program) and program analysis techniques for test data generation.

[1]  Phil McMinn,et al.  Hybridizing Evolutionary Testing with the Chaining Approach , 2004, GECCO.

[2]  Bogdan Korel,et al.  The chaining approach for software test data generation , 1996, TSEM.

[3]  Matthias Grochtmann,et al.  Verifying Timing Constraints of Real-Time Systems by Means of Evolutionary Testing , 1998, Real-Time Systems.

[4]  Mark Harman,et al.  Testability transformation , 2004, IEEE Transactions on Software Engineering.

[5]  Phil McMinn,et al.  Search‐based software test data generation: a survey , 2004, Softw. Test. Verification Reliab..

[6]  B. F. Jones,et al.  The Automatic Generation Of Software Test Data Sets Using Adaptive Search Techniques , 1970 .

[7]  John A. Clark,et al.  An automated framework for structural test-data generation , 1998, Proceedings 13th IEEE International Conference on Automated Software Engineering (Cat. No.98EX239).

[8]  John A. Clark,et al.  Automated test‐data generation for exception conditions , 2000 .

[9]  Joachim Wegener,et al.  Evolutionary test environment for automatic structural testing , 2001, Inf. Softw. Technol..

[10]  Bogdan Korel,et al.  Assertion-oriented automated test data generation , 1996, Proceedings of IEEE 18th International Conference on Software Engineering.

[11]  Bryan F. Jones,et al.  Automatic structural testing using genetic algorithms , 1996, Softw. Eng. J..

[12]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[13]  Nigel James Tracey,et al.  A search-based automated test-data generation framework for safety-critical software , 2000 .

[14]  Peter P. Puschner,et al.  Testing the results of static worst-case execution-time analysis , 1998, Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279).

[15]  Matthias Grochtmann,et al.  Systematic Testing of Real-Time Systems , 2000 .

[16]  John A. Clark,et al.  Automated program flaw finding using simulated annealing , 1998, ISSTA '98.

[17]  Roy P. Pargas,et al.  Test‐data generation using genetic algorithms , 1999, Softw. Test. Verification Reliab..

[18]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[19]  Bogdan Korel,et al.  Dynamic method for software test data generation , 1992, Softw. Test. Verification Reliab..

[20]  Bogdan Korel,et al.  Automated Software Test Data Generation , 1990, IEEE Trans. Software Eng..