Compartmental Modeling of 11C-HOMADAM Binding to the Serotonin Transporter in the Healthy Human Brain

The novel PET radioligand 11C-N,N-dimethyl-2-(2′-amino-4′-hydroxymethylphenylthio)benzylamine (11C-HOMADAM) binds with high affinity and selectively to the serotonin transporter (SERT). The purpose of this study was to develop a reliable kinetic model to describe the uptake of 11C-HOMADAM in the healthy human brain. Methods: Eight volunteers participated in the study; 5 of them were fitted with arterial catheters for blood sampling and all were scanned on a high-resolution research tomograph after the injection of 11C-HOMADAM. Regional distribution volumes and binding potentials were calculated with 2- and 4-parameter arterial-input compartment models, a 3-parameter reference tissue compartment model, and the Logan graphic approach. Results: The 2-parameter arterial-input compartment model was statistically superior to the 4-parameter model and described all brain regions. Calculated binding potentials agreed well between the arterial-input model and the reference tissue model when the cerebellum was used as the reference tissue. The Logan graphic approach was not able to estimate the higher concentration of SERT in the dorsal raphe than in the midbrain. Conclusion: 11C-HOMADAM is a highly promising radioligand with high ratios of specific binding to nonspecific binding in known SERT-rich structures, such as the raphe nuclei. The 3-parameter reference tissue model approach permits a simplified quantitatively accurate method for estimating SERT binding potentials.

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  Y. Agid,et al.  High and low affinity [3H]imipramine binding sites in control and parkinsonian brains. , 1985, European journal of pharmacology.

[4]  D. Neary,et al.  Presynaptic Serotonergic Dysfunction in Patients with Alzheimer's Disease , 1987, Journal of neurochemistry.

[5]  M J Welch,et al.  Positron Emission Tomographic Measurement of Cerebral Blood Flow and Permeability—Surface Area Product of Water Using [15O]Water and [11C]Butanol , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  J. Palacios,et al.  Autoradiography of antidepressant binding sites in the human brain: localization using [3h]imipramine and [3h]paroxetine , 1988, Neuroscience.

[7]  Marc Laruelle,et al.  Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites , 1988, Biological Psychiatry.

[8]  J. Marcusson,et al.  High affinity [3H]paroxetine binding to serotonin uptake sites in human brain tissue , 1989, Brain Research.

[9]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[10]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  D E Kuhl,et al.  Compartmental Analysis of [11C]Flumazenil Kinetics for the Estimation of Ligand Transport Rate and Receptor Distribution Using Positron Emission Tomography , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  M. Fujita,et al.  Cellular localization of serotonin transporter mRNA in the rat brain , 1993, Neuroscience Letters.

[13]  R. Blakely,et al.  Expression of Serotonin Transporter Messenger RNA in the Human Brain , 1994, Journal of neurochemistry.

[14]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[16]  J. Haycock,et al.  Quantitative subregional distribution of serotonin1A receptors and serotonin transporters in the human dorsal raphe , 1996, Brain Research.

[17]  Charles R. Meyer,et al.  Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations , 1997, Medical Image Anal..

[18]  C. Nemeroff,et al.  The serotonin transporter and depression , 1998, Depression and anxiety.

[19]  V. M. Pickel,et al.  Ultrastructural Localization of the Serotonin Transporter in Limbic and Motor Compartments of the Nucleus Accumbens , 1999, The Journal of Neuroscience.

[20]  M. Kraut,et al.  Kinetic Analysis of [11C]McN5652: A Serotonin Transporter Radioligand , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[21]  Alan A. Wilson,et al.  Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB , 2000, European Journal of Nuclear Medicine.

[22]  Christer Halldin,et al.  Measurement of Striatal and Extrastriatal Dopamine D1 Receptor Binding Potential With [11C]NNC 112 in Humans: Validation and Reproducibility , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  O B Paulson,et al.  Quantitation of Regional Cerebral Blood Flow Corrected for Partial Volume Effect Using O-15 Water and PET: II. Normal Values and Gray Matter Blood Flow Response to Visual Activation , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  J. Hietala,et al.  PET studies of brain monoamine transporters. , 2000, Current pharmaceutical design.

[25]  M Slifstein,et al.  Effects of statistical noise on graphic analysis of PET neuroreceptor studies. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[26]  M Slifstein,et al.  In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  Simon M. Ametamey,et al.  Evaluation of Serotonergic Transporters using PET and [11C](+)McN-5652: Assessment of Methods , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  D L Alexoff,et al.  A Strategy for Removing the Bias in the Graphical Analysis Method , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  Alan A. Wilson,et al.  Positron Emission Tomography Quantification of [11C]-DASB Binding to the Human Serotonin Transporter: Modeling Strategies , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  S. Gunn,et al.  Positron Emission Tomography Compartmental Models , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  John M Hoffman,et al.  Measurement of dopamine transporter occupancy for multiple injections of cocaine using a single injection of [F‐18]FECNT , 2002, Synapse.

[32]  Alan A. Wilson,et al.  Comparative Evaluation in Nonhuman Primates of Five PET Radiotracers for Imaging the Serotonin Transporters: [11C]McN 5652, [11C]ADAM, [11C]DASB, [11C]DAPA, and [11C]AFM , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  Zsolt Szabo,et al.  Modified Regression Model for the Logan Plot , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  Mark Slifstein,et al.  Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[35]  C. Halldin,et al.  Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  C. Kilts,et al.  Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters. , 2005, Nuclear medicine and biology.

[37]  H.W.A.M. de Jong,et al.  Quantitative Experimental Comparison of HRRT versus HR+ PET Brain Studies , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[38]  Ronald Boellaard,et al.  Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner , 2007, Physics in medicine and biology.

[39]  Claude Comtat,et al.  Assessment of 11C-PE2I Binding to the Neuronal Dopamine Transporter in Humans with the High-Spatial-Resolution PET Scanner HRRT , 2007, Journal of Nuclear Medicine.

[40]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.